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Learning Objectives

»Explain the concept of correlation between asset returns.

»Understand how correlation affects portfolio risk.

» Compute Value at Risk (VaR) for simple portfolios.

» Explain the concept of conditional covariance and correlation.
»Understand quasi-maximum likelihood estimation (QMLE).

» Discuss realized and range-based covariance estimators.
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Portfolio Risk and Correlation

Portfolio risk depends not only on the risk of individual assets but also on how they move
together — their correlation.

For a portfolio of two assets:
RP = W1R1 + W2R2

The portfolio variance is:

2 _ 22,12
0y = Wi0i+Ww;

0% + 2w w,045,
Where,

012 = P120107

p1, = correlation coefficient between R; and R,
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Portfolio Variance and Covariance

For daily log returns the portfolio return relationship will hold approximately
n

Rpp 41 7= ZW:‘JRE,IH

i=1

where the sum is taken over the n securities in the portfolio, w; ; denotes the relative weight of
security i at the end of day t.

The variance of the portfolio can be written as

Upp t+1 = Z Zwi Wit jjt+1 = Z Zwi Wit T i+ 19 04+102 141

i=1 j=I i=1 j=I
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Value at Risk (VaR) for Simple Portfolios

»VaR is the maximum loss not exceeded with a given probability a over a specific time horizon.

For a simple portfolio with normally distributed returns:
VaR, =2z4.0, .V

Where,
* Z,: quantile of standard normal distribution

* 0y portfolio standard deviation (measure of risk or volatility).
* V/y: current portfolio value

JExample:

If Vo = 1,000,000; g, = 0.02; and a = 0.05:
VaR, o5 = 1.65 X 0.02 X 1000000 = 32,900

There’s a 5% chance the portfolio will lose more than $32,900 in one day.
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Value at Risk (VaR) for Simple Portfolios

If we are willing to assume that returns are multivariate normal, then the portfolio return, which is just a linear combination of
asset returns, will be normally distributed, and we have

P _ -1
VaRt+1 = —O0pFt+1 (Pp

It gives the potential maximum loss at a certain confidence level “p” for the portfolio at time t+1.

Where,
* VaR? ,: Value at Risk for the portfolio PF at time t+1 and confidence level p

* oprt+1: Forecasted portfolio standard deviation (volatility) at time t+1. It measures how much the portfolio’s return is
expected to fluctuate.

. <p51: The inverse cumulative distribution function (quantile) of the standard normal distribution corresponding to the
probability p. It gives the critical value (z-score) for the desired confidence level.

* For 95% confidence: @gy3s = —1.645
* For 99% confidence: ¢gg; = —2.33

* Multiplying this by the portfolio’s volatility opr ;.1 gives the expected loss, and the negative sign makes it a positive
risk measure.

* Negative sign (-): Ensures VaR is expressed as a positive loss value, since the quantile for the left tail (loss) is negative.
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Value at Risk (VaR) for Simple Portfolios

JExample:

VaR?,, = —(0.02)(—1.645) = 0.0329

If the portfolio value is V;, = 1,000,000:
VaR = 0.0329 x 1000000 = 32,900

There’s a 5% chance the portfolio will lose more than $32,900 in one day.
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Expected Shortfall (ES)

»measures the average loss in the worst p% of cases:
D(pp")
p

P _
ESt+1 = OpF t+1

Where,
« ES? .: Expected Shortfall at confidence level 1-p

opr t+1: Portfolio volatility

gogl: Inverse standard normal CDF
@(p,1): PDF value at that quantile
* p: Tail probability
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Expected Shortfall (ES)

JExample: For the previous example, we can calculate ES as:

. 0(—1.645) 0.103 )
ESY = 0.02 X === 0.02 = 0.0412 = 4.12%

If your portfolio value is $1,000,000:
ES2% = 0.0412 x 1000000 = $41,200
If you breach that level, the average loss will be about $41,200.
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VaR vs ES difference

»VaR gives the threshold loss not exceeded 95%
of the time.

»ES gives the average loss beyond that
threshold.

*The blue curve shows the standard normal
distribution of returns.

*The red dashed line marks the VaR (Value at
Risk) — the cutoff point where the worst 5% of
outcomes begin.

=sThe red shaded area represents those extreme
losses (the 5% tail).

*"The purple label (ES = 4.13%) shows the
Expected Shortfall, which is the average loss
within that red tail region.
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Limitations

»Volatility forecasts alone are not enough

* Even if we can accurately predict individual asset volatilities (risk of each stock), we still need to know how those
assets move together — i.e., their correlations.

* Portfolio risk depends not only on each asset’s volatility but also on how they co-move.

»The number of correlations grows rapidly
* For n assets, the number of unique pairwise correlations is:

Example:
If n=100 then we’ll have 4950 correlations to model, which would be a daunting task.

»The problem is “high-dimensional”
* As portfolios grow large, modeling thousands of correlations becomes computationally complex and unstable.

* Traditional methods (like simple pairwise correlations) are not practical.

> Need for large-dimensional modeling techniques
* Factor models

* Shrinkage estimators

* Dynamic Conditional




Exposure Mapping

»In large portfolios, directly modeling all pairwise correlations is computationally intensive.

»To simplify this, we can reduce dimensionality by expressing the portfolio return as a function
of a few key risk factors.

» This is known as Exposure Mapping or Factor Structure Modeling.

» Exposure mapping is a dimension-reduction technique in portfolio risk modeling.

> It links portfolio risk to common risk factors.




Exposure Mapping

> Basic One Factor Model:

Tprt+1 = TMEtt+1 T Et+1

where:
* Tppt+1: Portfolio return

* Tmkte+1: Market (systematic) return

* &4q: idiosyncratic (asset-specific) risk, assumed independent of the market




Exposure Mapping

» Portfolio Variance Decomposition
e The total portfolio variance is:

2 2 2
Oprt+1 — OMKtt+1 T Oc

Where,
* The first term represents systematic market risk.

* The second term represents idiosyncratic risk (unique to the portfolio).




Exposure Mapping

»Index Mapping:

»In a highly diversified portfolio (e.g., similar to the S&P 500 index return), no correlation
modeling is necessary. we can assume:
O-IEF,t+1 ~ UIZWKt,t+1

»VaR under index mapping:

» Assuming normality,

P _ —1
VaR;,1 = —0Oukt, t+1 Pp




Exposure Mapping

> Beta Mapping:

»In many cases, the portfolio’s return may not move exactly one-to-one with the market.
We introduce a sensitivity parameter (B) to capture this relationship:

Tprt+1 = BTuket+1 T Et+1

Hence,

2 _ p2..2 2
OpF t+1 — p Opmktt+110¢

If the portfolio is well diversified and the market explains most of the variation:

2 —— P22
Oprt+1 = p OMKtt+1




Exposure Mapping

» Multi-Factor Exposure Model:

For large, diversified portfolios, risk may depend on multiple systematic factors — such as:
e Country equity indices
* Foreign exchange rates
* Commodity price indices

»We can express portfolio return as:

Tpp 41 = P1TrF1, t41 + B2Tr2, t41% - + BrpTng, t+41 €41

where ny is the number of factors, typically much smaller than the number of assets (ng<<n) and &,
are assumed to be independent of the risk factors.




Exposure Mapping

> Portfolio Variance under Factor Model

» The portfolio variance can be written as:
2 _ p! 2
Oppt+1 = PrXFt+1Pr + 0¢

Where,
° Y.Ft+1: covariance matrix of factor returns

* PBr: vector of factor exposures

> If the factor model captures most of the systematic variation:

2 ~
Oprt+1 ~ ﬁl’?ZF,t+1ﬁF

This drastically reduces dimensionality, since we now model variances and correlations among a few
factors, not thousands of individual assets.




GARCH Conditional Covariance

= Portfolios often include many assets (n = 10) or risk factors.

= Risk managers must estimate an n x n covariance matrix to capture how asset returns move together.

= Goal: Model time-varying covariances that evolve with market conditions




GARCH Conditional Covariance

JRolling Covariance Estimation:
* Simple approach: Use rolling averages over a fixed window of m days.

* For the covariance between asset (or risk factor) i and j; we can simply estimate,

l m
Tij,t+1 = EZRi,r+l—er,r+l—r
=1

* Pros: Easy to compute.

* Cons:
* Sensitive to choice of window length m.

e Equal weighting of old and new data - not adaptive.




GARCH Conditional Covariance

Exponential Smoothing (RiskMetrics Approach):
* Gives more weight to recent data:

Oijt+1 = (I - A)Ri,er,r + AC"{;‘,:

where typically A=0.94.
* Advantages: Smooth, adaptive estimate.
* Limitations:

* No mean reversion — if covariance falls, it stays low indefinitely.

* Same decay parameter A must be used across all asset pairs for matrix consistency.




GARCH Conditional Covariance

(JGARCH-style Covariance Modeling:
* To allow mean reversion, use a GARCH(1,1)-type model for covariance:

Oijt+1 = wjj + R (Rj 1 + Boij
 Long-run mean covariance:
ojj = wij/(l —a— B)
Where,

a: sensitivity to new shocks

B: persistence of past covariance

w;;:baseline level ensuring mean reversion




GARCH Conditional Covariance

Uinternal Consistency (Positive Semi-Definiteness):
* A valid covariance matrix must satisfy:

!
w X we >0

* This corresponds to saying that the covariance matrix is positive semidefinite.
* |tis ensured by estimating volatilities and covariance's in an internally consistent fashion.

> Limitations:

* Unfortunately, it is not clear that the persistence parameters a,f8 and A should be the same for all
variances and covariance.

e Leads to more flexible multivariate GARCH frameworks like:
* BEKK model
* DCC-GARCH model




Example:

Day Asset A Asset B
1 0.20 0.10
2 -0.30 -0.25
3 0.15 0.05
4 0.40 0.35
5 -0.10 -0.20
6 0.25 0.15
7 -0.35 -0.30
8 0.10 0.05
9 -0.05 0.00

10 0.30 0.20

1. Calculate mean and standard deviation, of each
asset.

2. Calculate correlation between Asset A and Asset B

3. Calculate the unconditional 1-day, 1% Value-at-Risk
(VaR) for each asset individually, assuming normal
distribution:

VaR; 19, = — (i + 20,010
4. Portfolio VaR (50%-50%):
» Portfolio mean:

tp = 0.5u, + 0.5up
» Portfolio Variance:
o5= 0.5%07 + 0.5%20% + 2(0.5)(0.5)0,405
» Portfolio VaR:

VaRy 1o, = _(.up + ZO.Olap)-




Next...

»Dynamic Conditional Correlation (DCC)

» Exponential Smoother Correlations
» Mean-Reverting Correlation

»QMLE

> Realized and Range-Based Covariance




Dynamic Conditional Correlation (DCC)

» Capture time-varying correlations between multiple asset returns.

(JKey Features:
»Models conditional variances using univariate GARCH for each asset.

»Models conditional correlations dynamically over time.

» Provides a flexible and realistic correlation structure, unlike static correlations.




Dynamic Conditional Correlation (DCC)

correlation is defined from covariance and volatility by

Piji+1 = Oiji+1/(Oi 1410 141)
we have the RiskMetrics model, then

oiji+1 =1 =) RiRj+ Ao, foralli,)

then we get the implied dynamic correlations

(I =2 Ri(Rj;+ rojj;

Pij.t+1 =

\/((1 — R 4207 )((1 =) R? 4+ 507)




Dynamic Conditional Correlation (DCC)

»We can then standardize each return by its dynamic standard deviation to get the standardized
returns, .
Ji+1 = R-!',I+ | /G'i,,t_|_] for all ¢
»Modeling the conditional correlation of the raw returns is equivalent to modeling

the conditional covariance of the standardized returns.

Ei (Zig+13,041) = E (Riyi+1/05041) (Rjyi1/0,141))
=E (Ri+1Rj.14+1) /(0410141
= 0jj1+1/(0i1+10,141)
= Piji+1, forall i,




Exponential Smoother Correlations

Exponential smoothing is a method to give more weight to recent observations while gradually
reducing the influence of older data.

Define the smoothed covariance-like quantity, which evolves over time as:
Giji+1 = (1 = 2) (2i4zj.0) + 2qij.,  foralli,j

Where:

A = smoothing parameter (0<A<1)

z;Z;= cross-product of standardized returns (instantaneous correlation contribution)
q;j= previous smoothed value

Recent observations have weight 1-4

Past smoothed correlations decay with weight 4




Exponential Smoother Correlations

(ONormalization to Obtain Conditional Correlation

The q;; ++1 Matrix is not guaranteed to have values between -1 and 1. To obtain the actual conditional
correlation we normalize:

qij,1+1
Vi t+19jj,t+1

Pijt41 =

Where:

qii t+1 = Smoothed variance of standardized returns of asset i
qdjjt+1 = Smoothed variance of standardized returns of asset j
» Why normalization?

*Correlations must satisfy —1 <p;; +,4<1

*Normalizing ensures the smoothed matrix behaves like a proper correlation matrix.




Exponential Smoother Correlations

(dChoosing the Smoothing Parameter A

»Common choices: A= 0.94 for daily financial returns (as suggested by RiskMetrics)

»Lower A= smoother correlation, slower to react to market changes

»Higher A= more responsive, but may be noisy




Mean-Reverting Correlation

Correlations between asset returns are often not only time-varying but also tend to revert
toward a long-term average over time.

This phenomenon is called mean reversion.

qij,t+1
i+ 19,141

Pij,t41 =

qij,i+1 = ,(_J,ej + CH(Zi,ij,r - bij) +pB (q;‘j,r - ﬁ_l‘.g)

p 1 I o
plj — T Zf:] ZI,ij,f'




Realized Covariance

» Traditional covariance uses daily or lower-frequency returns, which may miss intraday
variation.

» Realized covariance uses high-frequency intraday returns to provide a more accurate estimate
of the actual covariance over a day.

»Why it matters:

* Provides better risk estimates
m

RCoVs = ZR ii/mBR2,14j/m
j=1

e Captures intraday dynamics and volatility clustering
e Useful as an input for realized-GARCH or DCC models

Pty 1 = RCoWy 1/ \[RVY RVE




Go through...

> Bivariate Quasi Maximum Likelihood Estimation

» Composite Likelihood Estimation in Large Systems

» An Asymmetric Correlation Model

»Range-Based Covariance Using No-Arbitrage Conditions
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