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Learning Objectives
Explain the concept of correlation between asset returns.

Understand how correlation affects portfolio risk.

Compute Value at Risk (VaR) for simple portfolios.

Explain the concept of conditional covariance and correlation.

Understand quasi-maximum likelihood estimation (QMLE).

Discuss realized and range-based covariance estimators.
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Portfolio Risk and Correlation
Portfolio risk depends not only on the risk of individual assets but also on how they move 
together — their correlation.

For a portfolio of two assets:
𝑅𝑃 = 𝑤1𝑅1 + 𝑤2𝑅2

The portfolio variance is:

𝜎𝑝
2 = 𝑤1

2𝜎1
2+𝑤2

2𝜎2
2 + 2𝑤1𝑤2𝜎12

Where,

𝜎12 = 𝜌12𝜎1𝜎2

𝜌12 = correlation coefficient between 𝑅1 and 𝑅2
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Portfolio Variance and Covariance
For daily log returns the portfolio return relationship will hold approximately

where the sum is taken over the n securities in the portfolio, 𝑤𝑖,𝑡 denotes the relative weight of
security i at the end of day t.

The variance of the portfolio can be written as
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Value at Risk (VaR) for Simple Portfolios
VaR is the maximum loss not exceeded with a given probability α over a specific time horizon.

For a simple portfolio with normally distributed returns:
𝑽𝒂𝑹𝜶 = 𝒛𝜶 . 𝝈𝒑 . 𝑽𝟎

Where,
• 𝑧𝛼: quantile of standard normal distribution
• 𝜎𝑝: portfolio standard deviation (measure of risk or volatility).
• 𝑉0: current portfolio value

Example: 

If 𝑉0 = 1,000,000; 𝜎𝑝 = 0.02; and 𝛼 = 0.05:
𝑉𝑎𝑅0.05 = 1.65 × 0.02 × 1000000 = 32,900

There’s a 5% chance the portfolio will lose more than $32,900 in one day.
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Value at Risk (VaR) for Simple Portfolios
If we are willing to assume that returns are multivariate normal, then the portfolio return, which is just a linear combination of
asset returns, will be normally distributed, and we have

𝑽𝒂𝑹𝒕+𝟏
𝒑

= −𝝈𝑷𝑭,𝒕+𝟏 𝝋𝒑
−𝟏

It gives the potential maximum loss at a certain confidence level “p” for the portfolio at time t+1.

Where,

• 𝑉𝑎𝑅𝑡+1
𝑝

: Value at Risk for the portfolio PF​ at time t+1 and confidence level p

• 𝜎𝑃𝐹,𝑡+1: Forecasted portfolio standard deviation (volatility) at time t+1. It measures how much the portfolio’s return is
expected to fluctuate.

• 𝜑𝑝
−1: The inverse cumulative distribution function (quantile) of the standard normal distribution corresponding to the

probability 𝑝. It gives the critical value (z-score) for the desired confidence level.

• For 95% confidence: 𝜑0.05
−1 = −1.645

• For 99% confidence: 𝜑0.01
−1 = −2.33

• Multiplying this by the portfolio’s volatility 𝝈𝑷𝑭,𝒕+𝟏 gives the expected loss, and the negative sign makes it a positive
risk measure.

• Negative sign (-): Ensures VaR is expressed as a positive loss value, since the quantile for the left tail (loss) is negative.
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Value at Risk (VaR) for Simple Portfolios
Example:

𝑉𝑎𝑅𝑡+1
𝑝

= − 0.02 −1.645 = 0.0329

If the portfolio value is 𝑉0 = 1,000,000:
𝑉𝑎𝑅 = 0.0329 × 1000000 = 32,900
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There’s a 5% chance the portfolio will lose more than $32,900 in one day.



Expected Shortfall (ES)
measures the average loss in the worst p% of cases:

𝐸𝑆𝑡+1
𝑝

= 𝜎𝑃𝐹,𝑡+1
∅(𝜑𝑝

−1)

𝑝

Where,

• 𝐸𝑆𝑡+1
𝑝

: Expected Shortfall at confidence level 1-p

• 𝜎𝑃𝐹,𝑡+1: Portfolio volatility

• 𝜑𝑝
−1: Inverse standard normal CDF

• ∅(𝜑𝑝
−1): PDF value at that quantile

• 𝑝: Tail probability
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Expected Shortfall (ES)
Example: For the previous example, we can calculate ES as:

𝐸𝑆𝑡+1
0.05 = 0.02 ×

∅(−1.645)

0.05
= 0.02

0.103

0.05
= 0.0412 = 4.12%

If your portfolio value is $1,000,000:

𝐸𝑆𝑡+1
0.05 = 0.0412 × 1000000 = $41,200

If you breach that level, the average loss will be about $41,200.
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VaR vs ES difference
VaR gives the threshold loss not exceeded 95%
of the time.

ES gives the average loss beyond that
threshold.

The blue curve shows the standard normal
distribution of returns.

The red dashed line marks the VaR (Value at
Risk) — the cutoff point where the worst 5% of
outcomes begin.

The red shaded area represents those extreme
losses (the 5% tail).

The purple label (ES = 4.13%) shows the
Expected Shortfall, which is the average loss
within that red tail region.
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Limitations
Volatility forecasts alone are not enough

• Even if we can accurately predict individual asset volatilities (risk of each stock), we still need to know how those
assets move together — i.e., their correlations.

• Portfolio risk depends not only on each asset’s volatility but also on how they co-move.

The number of correlations grows rapidly

• For n assets, the number of unique pairwise correlations is:

Example:
If n=100 then we’ll have 4950 correlations to model, which would be a daunting task.

The problem is “high-dimensional”

• As portfolios grow large, modeling thousands of correlations becomes computationally complex and unstable.

• Traditional methods (like simple pairwise correlations) are not practical.

Need for large-dimensional modeling techniques

• Factor models 

• Shrinkage estimators 

• Dynamic Conditional
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Exposure Mapping
In large portfolios, directly modeling all pairwise correlations is computationally intensive.

To simplify this, we can reduce dimensionality by expressing the portfolio return as a function
of a few key risk factors.

This is known as Exposure Mapping or Factor Structure Modeling.

Exposure mapping is a dimension-reduction technique in portfolio risk modeling. 

It links portfolio risk to common risk factors.
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Exposure Mapping
Basic One Factor Model:

𝑟𝑃𝐹,𝑡+1 = 𝑟𝑀𝐾𝑡,𝑡+1 + 𝜀𝑡+1

where:
• 𝑟𝑃𝐹,𝑡+1: portfolio return

• 𝑟𝑀𝐾𝑡,𝑡+1: market (systematic) return

• 𝜀𝑡+1: idiosyncratic (asset-specific) risk, assumed independent of the market
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Exposure Mapping
Portfolio Variance Decomposition
• The total portfolio variance is:

𝜎𝑃𝐹,𝑡+1
2 = 𝜎𝑀𝐾𝑡,𝑡+1

2 + 𝜎𝜖
2

Where,
• The first term represents systematic market risk.

• The second term represents idiosyncratic risk (unique to the portfolio).
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Exposure Mapping
Index Mapping:

In a highly diversified portfolio (e.g., similar to the S&P 500 index return), no correlation
modeling is necessary. we can assume:

VaR under index mapping:

Assuming normality,

𝑉𝑎𝑅𝑡+1
𝑝

= −𝜎𝑀𝐾𝑡, 𝑡+1 𝜑𝑝
−1
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𝜎𝑃𝐹,𝑡+1
2 ≈ 𝜎𝑀𝐾𝑡,𝑡+1

2



Exposure Mapping
Beta Mapping:

In many cases, the portfolio’s return may not move exactly one-to-one with the market.
We introduce a sensitivity parameter (β) to capture this relationship:

Hence,

𝜎𝑃𝐹,𝑡+1
2 = 𝛽2𝜎𝑀𝐾𝑡,𝑡+1

2 +𝜎𝜖
2

If the portfolio is well diversified and the market explains most of the variation:

𝜎𝑃𝐹,𝑡+1
2 ≈= 𝛽2𝜎𝑀𝐾𝑡,𝑡+1

2
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Exposure Mapping
Multi-Factor Exposure Model:

For large, diversified portfolios, risk may depend on multiple systematic factors — such as:
• Country equity indices

• Foreign exchange rates

• Commodity price indices

We can express portfolio return as:

𝑟𝑃𝐹,𝑡+1 = 𝛽1𝑟𝐹1, 𝑡+1 + 𝛽2𝑟𝐹2, 𝑡+1+ … + 𝛽𝑛𝐹𝑟𝑛𝐹, 𝑡+1+𝜀𝑡+1

where 𝑛𝐹 is the number of factors, typically much smaller than the number of assets (𝑛𝐹<<n) and 𝜀𝑡+1
are assumed to be independent of the risk factors.
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Exposure Mapping
Portfolio Variance under Factor Model

The portfolio variance can be written as:

𝜎𝑃𝐹,𝑡+1
2 = 𝛽𝐹

′∑𝐹,𝑡+1𝛽𝐹 + 𝜎𝜖
2

Where,

• ∑𝐹,𝑡+1: covariance matrix of factor returns

• 𝛽𝐹: vector of factor exposures

If the factor model captures most of the systematic variation:

𝜎𝑃𝐹,𝑡+1
2 ≈ 𝛽𝐹

′∑𝐹,𝑡+1𝛽𝐹

This drastically reduces dimensionality, since we now model variances and correlations among a few
factors, not thousands of individual assets.
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GARCH Conditional Covariance
 Portfolios often include many assets (n ≥ 10) or risk factors.

 Risk managers must estimate an n × n covariance matrix to capture how asset returns move together.

 Goal: Model time-varying covariances that evolve with market conditions

BINA, F. 19



GARCH Conditional Covariance
Rolling Covariance Estimation:
• Simple approach: Use rolling averages over a fixed window of m days. 

• For the covariance between asset (or risk factor) i and j; we can simply estimate,

• Pros: Easy to compute.

• Cons:

• Sensitive to choice of window length m.

• Equal weighting of old and new data → not adaptive.
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GARCH Conditional Covariance
Exponential Smoothing (RiskMetrics Approach):
• Gives more weight to recent data:

where typically λ=0.94.
• Advantages: Smooth, adaptive estimate.

• Limitations:

• No mean reversion — if covariance falls, it stays low indefinitely.

• Same decay parameter λ must be used across all asset pairs for matrix consistency.
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GARCH Conditional Covariance
GARCH-style Covariance Modeling:
• To allow mean reversion, use a GARCH(1,1)-type model for covariance:

• Long-run mean covariance:

Where,

α: sensitivity to new shocks 

β: persistence of past covariance

𝑤𝑖𝑗:baseline level ensuring mean reversion

BINA, F. 22



GARCH Conditional Covariance
Internal Consistency (Positive Semi-Definiteness):
• A valid covariance matrix must satisfy:

• This corresponds to saying that the covariance matrix is positive semidefinite.

• It is ensured by estimating volatilities and covariance's in an internally consistent fashion.

Limitations:
• Unfortunately, it is not clear that the persistence parameters 𝛼, 𝛽 and λ should be the same for all

variances and covariance.

• Leads to more flexible multivariate GARCH frameworks like:

• BEKK model

• DCC-GARCH model
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Example:
Day Asset A Asset B

1 0.20 0.10

2 -0.30 -0.25

3 0.15 0.05

4 0.40 0.35

5 -0.10 -0.20

6 0.25 0.15

7 -0.35 -0.30

8 0.10 0.05

9 -0.05 0.00

10 0.30 0.20

BINA, F. 24

1. Calculate mean and standard deviation, of each 
asset.

2. Calculate correlation between Asset A and Asset B
3. Calculate the unconditional 1-day, 1% Value-at-Risk 

(VaR) for each asset individually, assuming normal 
distribution: 

𝑉𝑎𝑅𝑖,1% = − 𝜇𝑖 + 𝑧0.01𝜎𝑖 .
4.    Portfolio VaR (50%-50%): 
 Portfolio mean:

𝜇𝑝 = 0.5𝜇𝐴 + 0.5𝜇𝐵
 Portfolio Variance:

𝜎𝑃
2= 0.52𝜎𝐴

2 + 0.52𝜎𝐵
2 + 2(0.5)(0.5)𝜎𝐴𝜎𝐵

 Portfolio VaR:

𝑉𝑎𝑅𝑝,1% = − 𝜇𝑝 + 𝑧0.01𝜎𝑝 .



Next…
Dynamic Conditional Correlation (DCC)

Exponential Smoother Correlations

Mean-Reverting Correlation

QMLE

Realized and Range-Based Covariance
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Dynamic Conditional Correlation (DCC)
Capture time-varying correlations between multiple asset returns.

Key Features:

Models conditional variances using univariate GARCH for each asset.

Models conditional correlations dynamically over time.

Provides a flexible and realistic correlation structure, unlike static correlations.
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Dynamic Conditional Correlation (DCC)
correlation is defined from covariance and volatility by

we have the RiskMetrics model, then

then we get the implied dynamic correlations
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Dynamic Conditional Correlation (DCC)
We can then standardize each return by its dynamic standard deviation to get the standardized

returns,

Modeling the conditional correlation of the raw returns is equivalent to modeling

the conditional covariance of the standardized returns.
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Exponential Smoother Correlations
Exponential smoothing is a method to give more weight to recent observations while gradually
reducing the influence of older data.

Define the smoothed covariance-like quantity, which evolves over time as:

Where:

λ = smoothing parameter (0<λ<1)

𝑧𝑖𝑧𝑗= cross-product of standardized returns (instantaneous correlation contribution)

𝑞𝑖𝑗= previous smoothed value

Recent observations have weight 1−𝜆

Past smoothed correlations decay with weight 𝜆
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Exponential Smoother Correlations
Normalization to Obtain Conditional Correlation

The 𝑞𝑖𝑗,𝑡+1 matrix is not guaranteed to have values between -1 and 1. To obtain the actual conditional 
correlation we normalize:

Where:

𝑞𝑖𝑖,𝑡+1 = smoothed variance of standardized returns of asset i

𝑞𝑗𝑗,𝑡+1 = smoothed variance of standardized returns of asset j

Why normalization?

•Correlations must satisfy −1 <𝜌𝑗𝑗,𝑡+1<1

•Normalizing ensures the smoothed matrix behaves like a proper correlation matrix.
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Exponential Smoother Correlations
Choosing the Smoothing Parameter λ

Common choices: λ= 0.94 for daily financial returns (as suggested by RiskMetrics)

Lower λ→ smoother correlation, slower to react to market changes

Higher λ→ more responsive, but may be noisy
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Mean-Reverting Correlation
Correlations between asset returns are often not only time-varying but also tend to revert 
toward a long-term average over time.

This phenomenon is called mean reversion.
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Realized Covariance
Traditional covariance uses daily or lower-frequency returns, which may miss intraday 
variation.

Realized covariance uses high-frequency intraday returns to provide a more accurate estimate 
of the actual covariance over a day.

Why it matters:
• Provides better risk estimates

• Captures intraday dynamics and volatility clustering

• Useful as an input for realized-GARCH or DCC models
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Go through…
Bivariate Quasi Maximum Likelihood Estimation

Composite Likelihood Estimation in Large Systems

An Asymmetric Correlation Model

Range-Based Covariance Using No-Arbitrage Conditions
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Thank You
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