

Option Pricing (Chapter -10)

PREPARED BY

FARHANA AKTER BINA

ASSISTANT PROFESSOR

DEPARTMENT OF STATISTICS & DATA SCIENCE

JAHANGIRNAGAR UNIVERSITY

Learning Objectives

- What is Option Pricing?
- Call Option
- Put Option
- Payoff
- The Binomial Tree Model
- Example

Option Pricing

- **Option pricing** means **finding the fair value (price)** of an **option contract** — either a **call** or a **put**.
- **Options** are financial derivatives that give the holder the *right*, but not the *obligation*, to buy or sell an underlying asset at a predetermined price within a specific period.
- Option pricing = figuring out **how much the right to buy or sell something in the future is worth today**.
- **Types of Options**
 - **Call Option:** Gives the right to **buy** an asset at a fixed price (the *strike price*).
 - **Put Option:** Gives the right to **sell** an asset at a fixed price.

European Call Option

Gives the right to **buy** one unit of the underlying asset \tilde{T} **days** from now at price X (the *strike price*).

Call Payoff: $\text{Max} \{S_{t+\tilde{T}} - X, 0\}$

Symbol	Meaning
c	Current price of the call option
S_t	Current price of the underlying asset
$S_{t+\tilde{T}}$	Price of the asset at maturity
\tilde{T}	Days to maturity
X	Strike price

- The “Price of the asset at maturity” means the **market value of the underlying asset (such as a stock, commodity, or index) on the date when the option or contract expires**.
- The **strike price** (also called the **exercise price**) is the **fixed price** at which the holder of an option can **buy or sell** the underlying asset **when the option expires (at maturity)**.

European Put Option

Gives the right to **sell** one unit of the underlying asset \tilde{T} days from now at the **strike price (X)**.

Put Payoff: $\text{Max } \{X - S_{t+\tilde{T}}, 0\}$

Symbol	Meaning
---------------	----------------

p	Current price of the put option
-----	---------------------------------

S_t	Current price of the underlying asset
-------	---------------------------------------

$S_{t+\tilde{T}}$	Price of the asset at maturity
-------------------	--------------------------------

\tilde{T}	Days to maturity
-------------	------------------

X	Strike price
-----	--------------

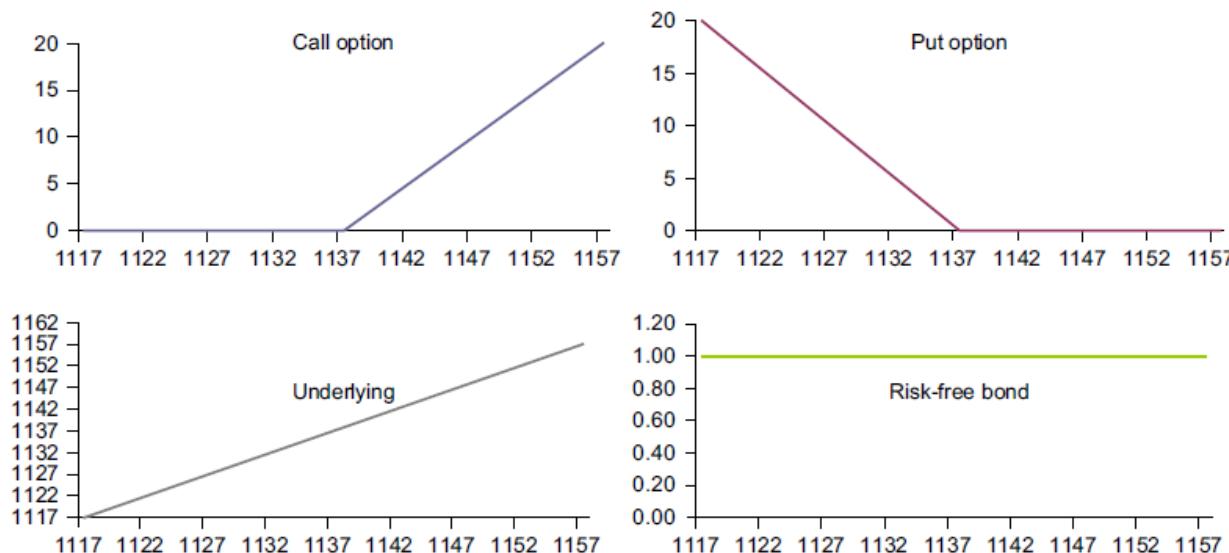
Payoff – The Core of Option Value

- The payoff function is the option's defining characteristic.
- The payoff function defines the value of the option at maturity.
- Depends on the underlying price at maturity,

Option Type	Payoff Function	Interpretation
Call	$\text{Max} \{S_{t+\tilde{T}} - X, 0\}$	Exercise if $S_{t+\tilde{T}} > X$
Put	$\text{Max} \{X - S_{t+\tilde{T}}, 0\}$	Exercise if $S_{t+\tilde{T}} < X$

• • •

**Figure 10.1 — Payoff as a Function of the Underlying Asset's Value
(Call Option, Put Option, Underlying Asset, and Risk-Free Bond)**



Notes: All panels have the future value of the underlying asset on the horizontal axis. The top-left panel plots the call option value, the top right plots the put option value, the bottom left plots the underlying asset itself, and the bottom right plots the risk-free bond.

- The horizontal axis: future price of the underlying asset at maturity
- The vertical axis: payoff (value) of each instrument at maturity.
- The strike price ($X = 1137$) is the turning point where the option starts to gain value.
- Call = profit when price rises,
- Put = profit when price falls.
- Call options benefit from price increases.
- Put options benefit from price decreases.

Call Option (Top-Left Graph)

- A call option gives the right to buy the underlying asset at a fixed price (strike price $X = 1137$).
- Observation:
 - When the asset price < 1137 , the line is flat at 0 → no profit
 - When the asset price > 1137 , the line rises upward → profit increases as the price rises.

Formula:

$$\text{Payoff} = \text{Max} \{S_{t+\tilde{T}} - X, 0\}$$

Put Option (Top-Right Graph)

- A put option gives the right to sell the underlying asset at price $X = 1137$.
- Observation:
 - When the asset price > 1137 , the line is flat at 0 → no gain
 - When the asset price < 1137 , the line slopes downward → profit increases as price falls.

Formula:

$$\text{Payoff} = \text{Max} \{X - S_{t+\tilde{T}}, 0\}$$

Underlying Asset (Bottom-Left Graph)

- This shows the value of the asset itself.
- Observation:
 - The line rises steadily — value increases one-to-one with price.
- Formula:

$$\textit{Payoff} = S_{t+\tilde{T}}$$

Risk-Free Bond (Bottom-Right Graph)

- A risk-free bond gives a fixed return regardless of market movements (e.g., a Treasury bond).
- Observation:
- The line is perfectly flat — value stays constant over all asset prices.
- Formula:

$$\textit{Payoff} = (1 + r)^T$$

where r = risk-free rate, T = time to maturity.

Models

We will explore key models used in **European option pricing**, moving from classical to more advanced approaches that capture the complexities of real-world financial markets.

1. The Binomial Tree Model
2. The Black–Scholes–Merton (BSM) Model
3. The Gram–Charlier (GC) Expansion Model
4. GARCH-Based Option Pricing Models
5. Implied Volatility Function (IVF) Approach

The Binomial Tree Model

- The **key challenge** in option pricing is that the **future price of the underlying asset (stock)** is uncertain.
- To make the problem simpler, we assume a **binomial distribution** for future prices — meaning:
 - In a short time interval, the stock price can only move **up (u)** or **down (d)**.
- This is the simplest possible assumption about uncertainty.

Example

We want to find the **fair value** of a **call** and **put** option with:

Parameter	Symbol	Value
Current stock price	S_t	\$1,000
Strike price	X	\$900
Time to maturity	T	3 months (0.25 years)
Volatility (annualized)	σ	0.60 (60%)
Risk-free interest rate	r_f	5% per year
Steps in tree		2

• • •

➤ Step 1: Build the Binomial Tree for Stock Price (Lecture)

Step	Description	Stock Price
A	Start	\$1,000
B	One Up	$\$1,000 \times 1.2363 = \$1,236.31$
C	One Down	$\$1,000 \times 0.8089 = \808.86
D	Up–Up	$\$1,000 \times (1.2363)^2 = \$1,528.47$
E	Up–Down or Down–Up	$\$1,000 \times (1.2363 \times 0.8089) = \$1,000$
F	Down–Down	$\$1,000 \times (0.8089)^2 = \654.25

• • •

Using these up and down factors the tree is built from the current price of \$1000 on the left side to three potential values in three months, namely **\$1528.47** if the stock price moves up twice, **\$1000** if it has one up and one down move, and **\$654.25** if it moves down twice.

Table 10.1 Building the binomial tree forward from the current stock price

Market Variable		D
$S_t =$	1000	1528.47
Annual $r_f =$	0.05	
Contract Terms		B
$X =$	900	
$T =$	0.25	1236.31
Parameters		E
Annual Vol =	0.6	
tree steps =	2	A
$dt =$	0.125	1000.00
$u =$	1.23631111	1000.00
$d =$	0.808857893	
	C	808.86
	F	654.25

Notes: We construct a two-step binomial tree from today's price of \$1,000 using an annual volatility of 60%. The total maturity of the tree is three months.

...

➤ Step 2: Compute Option Payoffs at Maturity

➤ Call Option Payoff: **Call Payoff: $\text{Max } \{S_{t+\tilde{T}} - X, 0\}$**

Node	Stock Price	Payoff
D	\$1,528.47	\$628.47
E	\$1,000.00	\$100.00
F	\$654.25	\$0

➤ Put Option Payoff: **Put Payoff: $\text{Max } \{X - S_{t+\tilde{T}}, 0\}$**

Node	Stock Price	Payoff
D	\$1,528.47	\$0
E	\$1,000.00	\$0
F	\$654.25	\$245.75

• • •

- Step 3: Work Backward to Find Today's Option Price (**Lecture**)
- Step 4: Put Option Value (**Lecture**)

Fair value of Call Option = \$181.47

- **Calculate Risk Neutral Valuation (From Book)**

• • •

In the **binomial option pricing model**, the **core idea** is to **create a risk-free portfolio** — a combination of stock and option that has **the same value no matter what happens** (stock goes up or down).

That's why we **choose Δ (the hedge ratio)** .

...

- The Binomial tree approach is one of the most intuitive ways to introduce option pricing. It models the underlying asset price using a simple **up–down movement** at each step.
- However, the method has an important limitation:
 - It does not yield a **closed-form formula** for option prices.
 - We must compute prices numerically by working backward through the tree.
- To obtain a closed-form solution, we assume asset returns are i.i.d. normal.
- Assuming normal returns leads to BSM closed form formula.
- Includes adjustments for dividends and yields through simple adjustments.
- Foundation of modern derivatives pricing.

The Black–Scholes–Merton (BSM) Model

➤ BSM call price:

$$\begin{aligned}c_{BSM} &= \exp(-r_f \tilde{T}) \left[S_t \exp(r_f \tilde{T}) \Phi(d) - X \Phi(d - \sigma \sqrt{\tilde{T}}) \right] \\&= S_t \Phi(d) - \exp(-r_f \tilde{T}) X \Phi(d - \sigma \sqrt{\tilde{T}})\end{aligned}$$

Where,

$$d = \frac{\ln(S_t/X) + \tilde{T}(r_f + \sigma^2/2)}{\sigma \sqrt{\tilde{T}}}$$

- $\Phi(d - \sigma \sqrt{\tilde{T}})$ is the risk-neutral probability of exercise.
- $X \Phi(d - \sigma \sqrt{\tilde{T}})$ is the expected risk-neutral payout when exercising.
- $S_t \Phi(d) \exp(r_f \tilde{T})$ is the risk-neutral expected value of the stock acquired through exercise of the option.
- $\Phi(d)$ measures the sensitivity of the option price to changes in the underlying asset price, S_t , and is referred to as the delta of the option, where $\delta_{BSM} \equiv \frac{\partial c_{BSM}}{\partial S_t}$ is the first derivative of the option with respect to the underlying asset price. This and other sensitivity measures are discussed in detail in the next chapter.

...

➤ **d measures how far the stock price is above or below the strike, adjusted for volatility and time.**

- If **d is large and positive** → stock is very likely to finish above strike
- If **d is negative** → less likely
- If **d = 0** → 50% chance under risk neutrality

➤ What is risk neutral probability? (Book)

- **Adjusted so that all assets grow at the risk-free rate**
- Adjusted probability used for pricing, so expected return = risk-free rate

The Black–Scholes–Merton (BSM) Model

➤ BSM Put price:

$$\begin{aligned} p_{BSM} &= c_{BSM} + X \exp(-r_f \tilde{T}) - S_t \\ &= e^{-r_f \tilde{T}} \left\{ X \left[1 - \Phi(d - \sigma \sqrt{\tilde{T}}) \right] - S_t [1 - \Phi(d)] e^{r_f \tilde{T}} \right\} \\ &= e^{-r_f \tilde{T}} X \Phi(\sigma \sqrt{\tilde{T}} - d) - S_t \Phi(-d) \end{aligned}$$

➤ Where,

$$d = \frac{\ln(S_t/X) + \tilde{T}(r_f - q + \sigma^2/2)}{\sigma \sqrt{\tilde{T}}}$$

➤ q is the **Dividend yield (per day)**

➤ Dividend yield q is the **annual continuous dividend rate** paid by the stock.

• • •

-
- A **dividend** is a **payment made by a company to its shareholders**, usually from its profits.
 - Dividend yield is the annual continuous dividend rate.

If the annual dividend yield = q_{annual}

then **daily dividend yield** is:

$$q_{daily} = \frac{q_{annual}}{365}$$

(assuming 365 days; sometimes 252 trading days are used depending on the model) Suppose:

Annual dividend yield = 4%

$$q_{daily} = \frac{0.04}{365} \approx 0.0001096$$

The stock effectively pays **0.01096% dividend per day** on a continuous basis in the model.

• • •

➤ **Why is this used in option pricing?**

- In models like **Black–Scholes**, the dividend yield reduces the expected growth of the stock price (under risk-neutral measure)
- Stocks that pay high dividends grow slower in price.
- So call option values fall when dividend yield increases.
- Put option values rise with higher dividend yield.

Numerical Example: Pricing S&P 500 Call

Use the **Black-Scholes pricing model** to price a European call option written on the S&P 500 index.

On January 6, 2010, the **value of the index was 1137.14**. The European call option has a **strike price of 1110** and **43 days to maturity**. The **risk-free interest rate for a 43-day holding period** is found from the T-bill rates to be **0.0006824% per day** (that is, 0.000006824) and the dividend accruing to the index over the next 43 days is expected to be **0.0056967% per day**. For now, we assume the **volatility** of the index is **0.979940% per day**. Thus, we have

$$S_t = 1137.14$$

$$X = 1110$$

$$\tilde{T} = 43$$

$$r_f = 0.0006824\%$$

$$q = 0.0056967\%$$

$$\sigma = 0.979940\%$$

• • •

$$d = \frac{\ln(S_t/X) + \tilde{T}(r_f - q + \sigma^2/2)}{\sigma\sqrt{\tilde{T}}} = 0.374497, \text{ and } d - \sigma\sqrt{\tilde{T}} = 0.310238$$

which gives

$$\Phi(d) = 0.645983, \text{ and } \Phi(d - \sigma\sqrt{\tilde{T}}) = 0.621810$$

from which we can calculate the BSM call option price as

$$c_{BSM} = S_t \exp(-q\tilde{T}) \Phi(d) - \exp(-r_f\tilde{T}) X \Phi(d - \sigma\sqrt{\tilde{T}}) = 42.77$$

- Paying 42.77 today gives you the opportunity to buy the stock later at a fixed price.
- If the stock rises well above the strike, your payoff can be much higher.
- If it falls below the strike, your maximum loss is the 42.77 paid for the option.

Model Implementation

The simple BSM model implies that a European option price can be written as a non-linear function of six variables,

$$c_{BSM} = c(S_t, r_f, X, \tilde{T}, q; \sigma)$$

- All other inputs are observable directly from markets.
- Volatility is not directly observable.
- Volatility must be estimated—every other variable is known.
- Estimating Volatility by Minimizing Pricing Errors (Page- 233)

$$MSE_{BSM} = \min_{\sigma} \left\{ \frac{1}{n} \sum_{i=1}^n \left(c_i^{mkt} - c_{BSM}(S_t, r_f, X_i, \tilde{T}_i, q; \sigma) \right)^2 \right\}$$

Why this approach works well: Uses market option prices → captures **market expectations**.

• • •

➤ Implied Volatility:

$$\sigma_{BSM}^{iv} = c_{BSM}^{-1} (S_t, r_f, X, \tilde{T}, q, c^{mkt})$$

Returning to the preceding numerical example of the S&P 500 call option traded on January 6, 2010, knowing that the actual market price for the option was 42.53, we can calculate the implied volatility to be

$$\sigma_{BSM}^{iv} = c_{BSM}^{-1} (S_t, r_f, X, \tilde{T}, q, 42.53) = 0.971427\%$$

Why We Need GC Instead of BSM

The Black–Scholes–Merton (BSM) model assumes:

- returns are normally distributed
- therefore log prices are lognormal

But real market returns have:

- negative skewness (crashes happen more than big up-moves)
- positive kurtosis (fat tails)
- volatility smile / smirk patterns

- Because BSM cannot capture these effects, it misprices options — especially short-maturity and in-the-money options.
- **The Gram–Charlier (GC) expansion model fixes this by adding skewness and kurtosis into the pricing formula.**

The Gram–Charlier (GC) Expansion Model

In real financial markets:

- Asset returns are not perfectly normal
- They often show fat tails (large jumps)
- They show skewness (one side heavier)
- The Gram–Charlier model improves this by adjusting the normal distribution to match real-world return patterns.

- GC is an adjusted normal distribution that includes skewness and kurtosis.
- Useful for modeling non-normal returns in finance.
- Helps explain volatility smile and improve option pricing.

Definitions

➤ Daily log return:

$$R_{t+1} = \ln(S_{t+1}) - \ln(S_t)$$

➤ Mean Return:

$$E(R_{t+1}) = \mu - \frac{1}{2}\sigma^2$$

➤ Variance:

$$E\left(R_{t+1} - \mu + \frac{1}{2}\sigma^2\right)^2 = \sigma^2$$

Skewness and Kurtosis

- Skewness of the one-day return:

$$\zeta_{11} = \frac{E(R_{t+1} - \mu + \frac{1}{2}\sigma^2)^3}{\sigma^3}$$

- Skewness is informative about the degree of asymmetry of the distribution. A negative skewness arises from large negative returns being observed more frequently than large positive returns.

Skewness and Kurtosis

➤ Kurtosis of the one-day return:

$$\xi_{21} = \frac{E(R_{t+1} - \mu + \frac{1}{2}\sigma^2)^4}{\sigma^4} - 3$$

➤ Assuming that returns are independent over time, the skewness at horizon \tilde{T} can be written as a simple function of the daily skewness and for kurtosis:

$$\xi_{1\tilde{T}} = \xi_{11}/\sqrt{\tilde{T}}$$

$$\xi_{2\tilde{T}} = \xi_{21}/\tilde{T}$$

➤ It collapses to the standard normal density when skewness and kurtosis are both zero. Thus GC collapses back to BSM.

GC

- The standardized return at the \tilde{T} -day horizon as

$$w_{\tilde{T}} = \frac{R_{t+1:t+\tilde{T}} - \tilde{T}(\mu - \frac{1}{2}\sigma^2)}{\sqrt{\tilde{T}}\sigma}$$

$$R_{t+1:t+\tilde{T}} = \left(\mu - \frac{1}{2}\sigma^2\right)\tilde{T} + \sigma\sqrt{\tilde{T}}w_{\tilde{T}}$$

- The distribution is modeled by the **Gram–Charlier expansion**.
- Assume that the standardized returns follow the distribution given by the Gram–Charlier expansion, which is written as

$$f(w_{\tilde{T}}) = \phi(w_{\tilde{T}}) - \zeta_{1\tilde{T}} \frac{1}{3!} D^3 \phi(w_{\tilde{T}}) + \zeta_{2\tilde{T}} \frac{1}{4!} D^4 \phi(w_{\tilde{T}})$$

GC

➤ GC Call Option Price:

$$c_{GC} \approx S_t \Phi(d) - X e^{-r_f \tilde{T}} \Phi\left(d - \sqrt{\tilde{T}}\sigma\right)$$

➤ Estimate them by minimizing:

$$MSE_{GC} = \min_{\sigma, \zeta_{11}, \zeta_{21}} \left\{ \frac{1}{n} \sum_{i=1}^n \left(c_i^{mkt} - c_{GC}(S_t, r_f, X_i, \tilde{T}_i; \sigma, \zeta_{11}, \zeta_{21}) \right)^2 \right\}$$

• • •

➤ Implied Volatility:

$$\sigma_{GC}^{iv} = c_{BSM}^{-1}(S_t, r_f, X, \tilde{T}, c_{GC}) \approx \sigma \left[1 - \frac{\xi_{11}/\sqrt{\tilde{T}}}{3!} d - \frac{\xi_{21}/\tilde{T}}{4!} (1 - d^2) \right]$$

GARCH-Based Option Pricing Models

- BSM assumes:
 - constant volatility
 - normally distributed returns
 - no volatility clustering
- But real financial data show:
 - volatility clusters
 - periods of calm then turbulence
 - fat-tailed returns
 - asymmetric volatility (leverage effect)
- GARCH models capture all these features.

How GARCH is Used in Option Pricing

➤ The return process:

$$R_{t+1} \equiv \ln(S_{t+1}) - \ln(S_t) = r_f + \lambda\sigma_{t+1} - \frac{1}{2}\sigma_{t+1}^2 + \sigma_{t+1}z_{t+1}$$

with $z_{t+1} \sim N(0, 1)$, and $\sigma_{t+1}^2 = \omega + \alpha(\sigma_t z_t - \theta\sigma_t)^2 + \beta\sigma_t^2$

➤ Conditional Expectation and Variance:

$$E_t[R_{t+1}] = r_f + \lambda\sigma_{t+1} - \frac{1}{2}\sigma_{t+1}^2$$

$$V_t[R_{t+1}] = \sigma_{t+1}^2$$

• • •

- Show that: $E_t[S_{t+1}/S_t] = \exp(r_f + \lambda\sigma_{t+1})$
- Expected rate of return on the risky asset equals the risk-free rate: $E_t^*[S_{t+1}/S_t] = \exp(r_f)$
- The conditional variance under the risk-neutral process equal: $V_t^*[R_{t+1}] = \sigma_{t+1}^2$

• • •

➤ Option Price:

$$c_{GH} = \exp(-r_f \tilde{T}) E_t^* [\text{Max} \{ S_{t+\tilde{T}} - X, 0 \}]$$
$$\approx \exp(-r_f \tilde{T}) \frac{1}{MC} \sum_{i=1}^{MC} \text{Max} \{ \check{S}_{i,t+\tilde{T}}^* - X, 0 \}$$

- This expectation must usually be evaluated via:
- Monte Carlo simulation, or
 - Numerical integration

Implied Volatility Function (IVF) Approach

- The Implied Volatility Function (IVF) approach offers a way to price options by modeling the entire implied volatility surface directly, instead of modeling the underlying price dynamics first.
 - Instead of building a model for how the underlying asset price behaves over time,
 - we directly model how the market's implied volatility changes across strikes and maturities and then use that to price options.
- How option prices can be well captured? Discuss the steps. [Page: 244]

Thank You