THE QUESTION

import pandas as pd

data=pd.read_csv("C:/Users/jjgj/Downloads/Data.csv")

data.head(5)

Year
0 1980
1 1980
2 1980
3 1980
4 1980

TEM=temperature

Month Day
1 1
1 2
1 3
1 4
1 5

TEM

125

14.4

15.3

124

12.0

MXT=maximum temperature

MNT=minimum temperature

HUM=humidity

SLP=sea level pressure

WIS= wind speed

RIN=rainfall

SSH= sunshine hour

CLD=Cloud

MXT

26.0

21.2

22.2

24.0

23.9

MNT

12.2

9.5

14.7

10.0

12.0

HUM

69

85

84

73

72

SLP WIS

1013.53.3

1014.08.0

1015.05.0

1016.84.0

1016.18.0

RIN

0.0

0.0

8.0

0.0

0.0

SSH

7.9

0.8

4.1

8.4

9.0

CLD

The dataset Data.csv contains daily atmospheric information (TEM, MXT, MNT, HUM, SLP, WIS,
RIN, SSH, CLD) for the period January 1980 to March 2022 for the location Jessore, Bangladesh.

Tasks:

1.

Perform exploratory data analysis (EDA) on the dataset after taking necessary actions to
handle missing data.

Fit a neural network model to predict maximum temperature (MXT) based on the other
atmospheric parameters.

Before fitting the model, normalize all variables using the transformation

Actual — Minimum

Scaled Value = 0.1 + 0.8 X - —
Maximum — Minimum

Use 80% of the data as training data, and the rest of data as the test data

Present the prediction accuracy of the neural network model separately for the training
and test data.

Represents the prediction accuracy results of the models for training data and test data

independently. Also, represent the scatter plot for the actual maximum rainfall and the

predicted maximum rainfall for training data,test data, overall data. Discuss your results.

Use your exam roll as a seed point (example: 122) to draw the training data.

it H###Python Code:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

print("\n===== BASIC INFO =====")

print(data.info())

print("\n===== SUMMARY STATISTICS =====")

print(data.describe())

print("\n===== MISSING VALUES =====")

print(data.isnull().sum())

---- Handle missing values (Impute with mean) ----

data.fillna(data.mean(numeric_only=True), inplace=True)

print("\n===== AFTER IMPUTATION =====")

print(data.isnull().sum())

2. NORMALIZATION USING GIVEN SCALING

Scaled = 0.1 + 0.8*%(x - xmin)/(xmax - xmin)

scaled = data.copy()

min_vals = scaled.min()

max_vals = scaled.max()

scaled = 0.1 + 0.8 * (scaled - min_vals) / (max_vals - min_vals)

3. TRAIN-TEST SPLIT (80-20)

Seed = exam roll number - example: 122

seed =122 # change to your exam roll

X = scaled.drop(columns=['MXT'])

y = scaled['MXT']

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.20, random_state=seed

model = MLPRegressor(hidden_layer_sizes=(20, 20),
activation='"relu’,
solver='adam',
max_iter=1000,

random_state=seed)

model.fit(X_train, y_train)

y_pred_train = model.predict(X_train)

y_pred_test = model.predict(X_test)

---- Training accuracy ----
rmse_train = np.sqrt(mean_squared_error(y_train, y_pred_train))
mae_train = mean_absolute_error(y_train, y_pred_train)

r2_train =r2_score(y_train, y_pred_train)

---- Test accuracy ----
rmse_test = np.sqrt(mean_squared_error(y_test, y_pred_test))
mae_test = mean_absolute_error(y_test, y_pred_test)

r2_test =r2_score(y_test,y pred_test)

print("\n========= TRAINING ACCURACY =========")
print("RMSE:", rmse_train)
print("MAE :", mae_train)

print("R? :", r2_train)

print("RMSE:", rmse_test)

print("MAE :", mae_test)

print("R? :", r2_test)

plt.figure(figsize=(15,4))

---- Train ----

plt.subplot(1,3,1)

plt.scatter(y_train, y_pred_train, s=8, color="'blue')
plt.xlabel("Actual MXT")

plt.ylabel("Predicted MXT")

plt.title("Training Data")

---- Test ----

plt.subplot(1,3,2)

plt.scatter(y_test, y_pred_test, s=8, color="red')
plt.xlabel("Actual MXT")

plt.ylabel("Predicted MXT")

plt.title("Test Data")

---- Overall ----

plt.subplot(1,3,3)

plt.scatter(y, model.predict(X), s=8, color="green’)
plt.xlabel("Actual MXT")

plt.ylabel("Predicted MXT")

plt.title("Overall Data")

plt.tight_layout()

plt.show()

