

3^2 Factorial Experiment

3^2 Factorial Experiment

A factorial experiment with two factors A and B each at three levels 0, 1, 2 is called 3^2 factorial experiment. Such a factorial experiment has $3^2 = 9$ possible treatment combinations which are shown in the following table.

		B			Total
		b_0	b_1	b_2	
A	$a_0 > 0$	$a_0 b_0$	$a_0 b_1$	$a_0 b_2$	A_0
		00	01	02	
	$a_1 > 1$	$a_1 b_0$	$a_1 b_1$	$a_1 b_2$	A_1
		10	11	12	
	$a_2 > 2$	$a_2 b_0$	$a_2 b_1$	$a_2 b_2$	A_2
		20	21	22	
Total		B_0	B_1	B_2	G

Effect of Different Factor

The effect of factor A can be determined as follows-

The change in the yield due to changing the level of A from 0 to 1 level is

$$\begin{aligned}
 A_1 - A_0 &= a_1 b_0 + a_1 b_1 + a_1 b_2 - a_0 b_0 - a_0 b_1 - a_0 b_2 \\
 &= b_0 (a_1 - a_0) + b_1 (a_1 - a_0) + b_2 (a_1 - a_0) \\
 &= (a_1 - a_0)(b_0 + b_1 + b_2)
 \end{aligned}$$

Similarly, change in the yield due to changing the level of A from 1 to 2 is-

$$\begin{aligned} A_2 - A_1 &= a_2 b_0 + a_2 b_1 + a_2 b_2 - a_1 b_0 - a_1 b_1 - a_1 b_2 \\ &= (a_2 - a_1)(b_0 + b_1 + b_2) \end{aligned}$$

The main effect of A can be partitioned into linear effect and quadratic effect.

Now, adding the above two change and dividing by r (replication) we get the linear effect of A and can be written as-

$$A' = \frac{1}{r}(a_2 - a_0)(b_0 + b_1 + b_2)$$

The quadratic effect of A can be obtained as-

$$\begin{aligned} A'' &= \frac{1}{2r}(A_2 - A_1 - A_1 + A_0) \\ &= \frac{1}{2r}(a_2 - 2a_1 + a_0)(b_0 + b_1 + b_2) \end{aligned}$$

Similarly,

$$\begin{aligned} B' &= \frac{1}{r}(b_2 - b_0)(a_0 + a_1 + a_2) \\ B'' &= \frac{1}{2r}(b_2 - 2b_1 + b_0)(a_0 + a_1 + a_2) \end{aligned}$$

The linear effect and quadratic effect both are independent and orthogonal and are estimated with 1 d.f. .

Now, the interaction effect AB (with 4 d.f.) can be partitioned into four components i.e. into 4 contrast (each with 1 d.f.). These 4 contrast can be obtained by multiplication of linear and quadratic effect.

$$A'B' = \frac{1}{2r}(a_2 - a_0)(b_2 - b_0) \quad \text{with 1 d.f.}$$

$$A''B' = \frac{1}{4r}(a_2 - 2a_1 + a_0)(b_2 - b_0) \quad \text{with 1 d.f.}$$

$$A'B'' = \frac{1}{4r}(a_2 - a_0)(b_2 - 2b_1 + b_0) \quad \text{with 1 d.f.}$$

$$A''B'' = \frac{1}{8r}(a_2 - 2a_1 + a_0)(b_2 - 2b_1 + b_0) \quad \text{with 1 d.f.}$$

Treatment Combination	Total Yield	Column-1	Column-2	Main & interaction effect	Divisor	SS
00	x_1	$x_1 + x_2 + x_3 = y_1$	$y_1 + y_2 + y_3 = G$	G	$9r$	
10	x_2	$x_4 + x_5 + x_6 = y_2$	$y_4 + y_5 + y_6 = [A']$	A'	$6r$	$SS(A') = \frac{[A']^2}{6r}$
20	x_3	$x_7 + x_8 + x_9 = y_3$	$y_7 + y_8 + y_9 = [A'']$	A''	$18r$	$SS(A'') = \frac{[A'']^2}{18r}$
01	x_4	$x_3 - x_1 = y_4$	$y_3 - y_1 = [B']$	B'	$6r$	$SS(B') = \frac{[B']^2}{6r}$
11	x_5	$x_6 - x_4 = y_5$	$y_6 - y_4 = [A'B']$	$A'B'$	$4r$	$SS(A'B') = \frac{[A'B']^2}{4r}$
21	x_6	$x_9 - x_7 = y_6$	$y_9 - y_7 = [A''B']$	$A''B'$	$12r$	$SS(A''B') = \frac{[A''B']^2}{12r}$
02	x_7	$x_3 - 2x_2 + x_1 = y_7$	$y_3 - 2y_2 + y_1 = [B'']$	B''	$18r$	$SS(B'') = \frac{[B'']^2}{18r}$
12	x_8	$x_6 - 2x_5 - x_4 = y_8$	$y_6 - 2y_5 + y_4 = [A'B'']$	$A'B''$	$12r$	$SS(A'B'') = \frac{[A'B'']^2}{12r}$
22	x_9	$x_9 - 2x_8 - x_7 = y_9$	$y_9 - 2y_8 + y_7 = [A''B'']$	$A''B''$	$36r$	$SS(A''B'') = \frac{[A''B'']^2}{36r}$

In Yates' method, we compute different SS with $1\ d.f.$

Computation of SS Using Linear Equation

The treatment combination of 3^2 factorial experiment can be written as-

00 01 02 10 11 12 20 21 22

For the main effect A :

The linear equation will be-

$$\left. \begin{array}{l} 1 \cdot x_1 + 0 \cdot x_2 = 0 \\ \quad \quad \quad = 1 \\ \quad \quad \quad = 2 \end{array} \right\} \bmod 3$$

$$\therefore A_0 = 00 + 01 + 02$$

$$A_1 = 10 + 11 + 12$$

$$A_2 = 20 + 21 + 22$$

$$\therefore SS(A) = \frac{A_0^2 + A_1^2 + A_2^2}{3r} - C.T. \quad \text{with 2 d.f.}$$

$$\text{Similarly, } SS(B) = \frac{B_0^2 + B_1^2 + B_2^2}{3r} - C.T. \quad \text{with 2 d.f.}$$

The interaction effect AB (with 4 d.f.) can be split into two components, AB and AB_2 (each with 2 d.f.).

Now for AB linear equation will be-

$$\left. \begin{array}{l} 1 \cdot x_1 + 1 \cdot x_2 = 0 \\ \quad \quad \quad = 1 \\ \quad \quad \quad = 2 \end{array} \right\} \bmod 3$$

$$\therefore (AB)_0 = 00 + 12 + 21$$

$$(AB)_1 = 01 + 10 + 22$$

$$(AB)_2 = 20 + 02 + 11$$

$$\therefore SS(AB) = \frac{(AB)_0^2 + (AB)_1^2 + (AB)_2^2}{3r} - C.T. \quad \text{with 2 d.f.}$$

For AB_2 the linear equation will be-

$$\left. \begin{array}{l} 1 \cdot x_1 + 2 \cdot x_2 = 0 \\ \quad \quad \quad = 1 \\ \quad \quad \quad = 2 \end{array} \right\} \bmod 3$$

$$\therefore (AB_2)_0 = 00 + 11 + 22$$

$$(AB_2)_1 = 10 + 02 + 21$$

$$(AB_2)_2 = 20 + 12 + 01$$

$$\therefore SS(AB_2) = \frac{(AB_2)_0^2 + (AB_2)_1^2 + (AB_2)_2^2}{3r} - C.T. \quad \text{with 2 d.f.}$$

For analysis of data in *RBD*

$$Total(SS) = \sum_{i=1}^r \sum_{j=1}^{3^2} y_{ij}^2 - C.T. \quad \text{where, } C.T. = \frac{G^2}{3^2 r}$$

$$Block(SS) = \frac{\sum_{i=1}^r R_i^2}{3^2} - C.T.$$

$$Treatment(SS) = \frac{\sum_{j=1}^{3^2} T_j^2}{r} - C.T. = SS(A) + SS(B) + SS(AB) + SS(AB_2)$$

$$Error(SS) = Total(SS) - Block(SS) - Treatment(SS) \quad \backslash$$

ANOVA-Table for 3^2 factorial experiment

Source of Variation	<i>d.f.</i>	SS	MSS	<i>F</i>
Replicate	$r-1$	S_R^2	$s_b^2 = S_b^2 / r-1$	
Treatments	$3^2 - 1 = 8$	S_t^2	$s_t^2 = S_t^2 / 8$	$\frac{s_t^2}{s_e^2} = F_t$
<i>A</i>	2	S_A^2	$s_A^2 = S_A^2 / 2$	$\frac{s_A^2}{s_e^2} = F_A$
<i>B</i>	2	S_B^2	$s_B^2 = S_B^2 / 2$	$\frac{s_B^2}{s_e^2} = F_B$
<i>AB</i>	2	S_{AB}^2	$s_{AB}^2 = S_{AB}^2 / 2$	$\frac{s_{AB}^2}{s_e^2} = F_{AB}$
<i>AB₂</i>	2	$S_{AB_2}^2$	$s_{AB_2}^2 = S_{AB_2}^2 / 2$	$\frac{s_{AB_2}^2}{s_e^2} = F_{AB_2}$
Error	$(3^2 - 1)(r - 1)$	S_e^2	$s_e^2 = S_e^2 / (3^2 - 1)(r - 1)$	
Total	$3^2 r - 1$			

Inference Procedure

The hypothesis is

H_0 : All the main effect and interaction effect are insignificant
against H_1 : All the main effect and interaction effect are significant

Test Statistic, $F = \frac{MS \text{ of a component}}{Error \ MS}$ which follows F -distribution with 2 and $(3^2 - 1)(r-1)$ d.f

Decision Rule

For a particular treatment, if $F_{cal} > F_{\alpha, tab}$ then we reject H_0 at $\alpha\%$ level of significance otherwise we accept it.