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Covariance Analysis 

 

 

Main variable or Response variable:  

The variable representing yield is called main variable or response variable. It is denoted by 𝑦. 

 

Concomitant variables:  

The additional variables representing heterogeneity of experimental units are called concomitant variables, auxiliary 

variables, supplementary variables or covariate denoted by 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑝. 

 

Layout plan:  

Placement of the treatment to the experimental unit according to the principle of an experimental design is called 

lay-out plan. Let 𝑦𝑖𝑗  is the 𝑗𝑡ℎ observation receiving the 𝑖𝑡ℎ treatment, then the layout plan is  

Treatment (t) 

𝑡1 𝑡2 … 𝑡𝑝 

𝑦11 𝑦21 … 𝑦𝑝1 

𝑦12 𝑦22 … 𝑦𝑝2 

⋮ ⋮ ⋮ ⋮ 

𝑦1𝑞  𝑦2𝑞  … 𝑦𝑝𝑞 

 

Analysis of covariance:  

Analysis of covariance is the process of analysis of variance on the observation of response variable 𝑦 after adjusting 

for the effects of uncontrolled concomitant variables. 

 

In other words, analysis of covariance is the method testing for differences among the treatment means after 

adjusting the yields for the effects of one or more covariates. As a matter of fact, analysis of covariance is the 

combination of two components variance analysis and regression analysis. 

 

Examples of analysis of covariance: 

1. In agricultural experiments with fertilizer treatments the number of plants per plot prior to the application of 

fertilizer will also contribute to the variation in the observed yields. Here yield of a crop is main variable, 

and the number of plants is covariate. 

2. In an experiment involving various teaching methods, the results of students can be adjusted for I.Q. before 

the experiment starts. 

3. In animal feeding experiments the initial weights of animals under investigation can be used as covariate. 

4. In an industrial experiment, by product may be found along with main product. 

5. In petrochemical experiments, diesel is the main product while nylon, polyester etc. are by-products. 

 

Uses of analysis of covariance: 

The important uses of analysis of covariance are enumerated below- 

1. Analysis of covariance (ANCOVA) can be applied to partition the total co-variation present in observed 

data into component parts. 

2. It is used to explain the data and the model with treatment effect. 
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3. It helps to improve the efficiency of the experiment by controlling the experimental error. 

4. It is used to estimate missing observations and to analyze the data with missing observations. 

5. It helps to estimate treatment effect by eliminating the effect of concomitant variable. 

6. It is used to partitioning of total co variation. 

7. It is also used to determine the nature of treatment for valid interpretation of data. 

8. It is applied to increased precision and error control of an experiment. 

9. It is used to determine the adjusted treatment means. 

10. It is used to test the homogeneity of regression equations. 

 

Advantages of ANCOVA: 

• ANCOVA adjusts for the effect of uncontrolled nuisance variables. 

• ANCOVA controls experimental errors and increases precision. 

• ANCOVA can be developed for non-orthogonal data. 

 

Disadvantages of ANCOVA: 

• If there is more than one external source of variation i.e. more than one concomitant variable, then the 

analysis becomes complicated. 

• There may be certain types of observation which do not satisfy all the assumptions of ANCOVA. 

 

Difference between Analysis of Covariance (ANCOVA) and Analysis of Variance (ANOVA): 

1. ANOVA is the systematic procedure of partitioning the total variation present in a set of observations associated 

with the nature of classification of data. ANCOVA is the method of adjusting for the effects of an 

uncontrolled concomitant variable. 

2. ANOVA is a technique for separating sample variance for a group of samples into partitions which are attributed 

to different sources, whereas ANCOVA is the combination of ANOVA and regression analysis. 

3. ANOVA is used for testing the equality of several means, while ANCOVA is used for improving the precision 

of an experiment. 

4. ANOVA deals with univariate data, whereas ANCOVA deals with bivariate data. 
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Analysis of Covariance in One-way Classification with Single Covariate or Completely Randomized 

Design with One Concomitant Variable: 

The linear model for analysis of covariance in a completely randomized design (CRD) with a single covariate is 

given by 

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽(𝑥𝑖𝑗 − 𝑥̄..) + 𝑒𝑖𝑗                 ;  𝑖 = 1 (1) 𝑝   ,   𝑗 = 1 (1)𝑞 

where, 𝑦𝑖𝑗 is the 𝑗𝑡ℎ observation receiving the 𝑖𝑡ℎ treatment of the response variable  

𝜇 is the general mean effect  

𝛼𝑖 is the 𝑖𝑡ℎ treatment effect  

𝛽 is the regression coefficient of y on x 

𝑥𝑖𝑗  is the concomitant variable of the 𝑗𝑡ℎ observation receiving the 𝑖𝑡ℎ treatment related to response variable 

𝑒𝑖𝑗 is the random error component. 

 

Assumption: 

1. Response variable 𝑦 is a random variable such that 𝑦 values are normally distributed with common variance 

𝜎2. 

2. Covariate 𝑥 is fixed whose values are measured without error. 

3. The concomitant variable 𝑥 is not affected by the treatments so that the variation of 𝑥 values is not due to the 

treatments. 

4. Regression of 𝑦 on 𝑥 is linear, such that 𝐸(𝑦|𝑋) = 𝛼 + 𝛽(𝑥𝑖𝑗 − 𝑥̄..) 

5. Regression lines for 𝑘 treatments are parallel straight lines having common or identical slopes or regression 

coefficients 𝛽 for various treatments and 𝛽 ≠ 0(𝛽𝑖 = 𝛽). 

6. Regression effect is independent of treatment.  

7. 𝜇, 𝛼𝑖𝑎𝑛𝑑𝛽 are unknown parameters  

8. 𝑒𝑖𝑗~𝑁𝐼𝐷(0, 𝜎2) 

 

Parameter Estimation: 

By using the least square method we obtain the estimates of the unknown parameters. 

The model is 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽 

(𝑥𝑖𝑗 − 𝑥̄..) + 𝑒𝑖𝑗                 ;  𝑖 = 1 (1) 𝑝   ,   𝑗 = 1 (1)𝑞 

 

𝛷 = ∑ ∑ 𝑒𝑖𝑗
2 = ∑ ∑[𝑦𝑖𝑗 − 𝜇 − 𝛼𝑖 − 𝛽(𝑥𝑖𝑗 − 𝑥̄..)]

2

𝑞

𝑗

𝑝

𝑖

𝑞

𝑗

𝑝

𝑖

. . . . . . . . . (1) 

From equation (1) we obtain the following normal equations 

𝑦.. = 𝑝𝑞𝜇̂ + 𝛽̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

. . . . . . . . . (2) 

𝑦𝑖. = 𝑞𝜇̂ + 𝑞𝛼̂𝑖 + 𝛽(𝑥𝑖. − 𝑞𝑥̄..). . . . . . . . . (3) 

∴ ∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

= 𝜇̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

+ ∑ ∑ 𝛼̂𝑖(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

+ 𝛽̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

 

                                                        = ∑ 𝛼̂𝑖(𝑥𝑖. − 𝑞𝑥̄..) + 𝛽̂ ∑ ∑ (𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖𝑖 . . . . . . . . . (4) 
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From the first equation, we obtain  

𝜇̂ = 𝑦̄..                                            [∵ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

= 0] 

From equation (3); 

𝑞𝛼̂𝑖 = 𝑦𝑖. − 𝑞𝜇̂ − 𝛽̂𝑞(𝑥̄𝑖. − 𝑥̄..) 

∴ 𝛼̂𝑖 = 𝑦̄𝑖. − 𝑦̄.. − 𝛽̂(𝑥̄𝑖. − 𝑥̄..) 

From equation (4); 

                    ∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..)𝑗𝑖  = ∑ 𝛼̂𝑖(𝑥𝑖. − 𝑞𝑥̄..) + 𝛽̂ ∑ ∑ (𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖𝑖 . . . . . . . . . (4) 

∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)(𝑦𝑖𝑗 − 𝑦̄..)

𝑗𝑖

= ∑[𝑦̄𝑖 . −𝑦̄.. − 𝛽̂(𝑥̄𝑖. − 𝑥̄..)](𝑥𝑖. − 𝑞𝑥̄..) + 𝛽̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖𝑖

 

                                                                = 𝑞 ∑ (𝑦̄𝑖. − 𝑦̄..)(𝑥̄𝑖. − 𝑥̄..)𝑖 − 𝛽̂𝑞 ∑ (𝑥̄𝑖. − 𝑥̄..)
2

𝑖 + 𝛽̂ ∑ ∑ (𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖  

Now, let us define, 

( )
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𝑇𝑦𝑦 = 𝑞 ∑(𝑦̄𝑖. − 𝑦̄..)
2

𝑖

 

𝑇𝑥𝑥 = 𝑞 ∑(𝑥̄𝑖. − 𝑥̄..)
2

𝑖

 

𝑇𝑥𝑦 = 𝑞 ∑(𝑥̄𝑖. − 𝑥̄..)(𝑦̄𝑖. − 𝑦̄..)

𝑖

 

𝐸𝑥𝑥 = 𝐺𝑥𝑥 − 𝑇𝑥𝑥  

𝐸𝑦𝑦 = 𝐺𝑦𝑦 − 𝑇𝑦𝑦  

𝐸𝑥𝑦 = 𝐺𝑥𝑦 − 𝑇𝑥𝑦  

 

∴ 𝐺𝑥𝑦 = 𝑇𝑥𝑦 − 𝛽̂𝑇𝑥𝑥 + 𝛽̂𝐺𝑥𝑥  

⇒ 𝐺𝑥𝑦 − 𝑇𝑥𝑦 = 𝛽̂(𝐺𝑥𝑥 − 𝑇𝑥𝑥) 

⇒ 𝐸𝑥𝑦 = 𝛽̂𝐸𝑥𝑥  

∴ 𝛽̂ =
𝐸𝑥𝑦

𝐸𝑥𝑥

 

 

How would you test the hypothesis that all the treatment effect are insignificant after eliminating the 

effect of covariate? 

The model is  𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽(𝑥𝑖𝑗 − 𝑥̄..) + 𝑒𝑖𝑗               ;  𝑖 = 1 (1) 𝑝   ,   𝑗 = 1 (1)𝑞 

                      𝜇̂ = 𝑦̄..; 𝛼̂𝑖 = 𝑦̄𝑖. − 𝑦̄.. − 𝛽̂(𝑥̄𝑖. − 𝑥̄..) and 𝛽̂ =
𝐸𝑥𝑦

𝐸𝑥𝑥
 

Over the null hypothesis 𝐻0: 𝛼𝑖 = 0 

Now we must calculate different sum of squares, such as  

𝑆𝑆(𝑑𝑢𝑒 𝑡𝑜 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) = 𝜇̂𝑦.. + ∑ 𝛼̂𝑖𝑦𝑖.

𝑖

+ ∑ ∑ 𝛽̂(𝑥𝑖𝑗 − 𝑥̄..)𝑦𝑖𝑗

𝑗𝑖

 

= 𝑦̄..𝑦.. + ∑[(𝑦̄𝑖. − 𝑦̄..) − 𝛽̂(𝑥̄𝑖. − 𝑥̄..)]𝑦𝑖.

𝑖

+ 𝛽̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)(𝑦𝑖𝑗 − 𝑦̄..)

𝑗𝑖

 

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑[(𝑦̄𝑖. − 𝑦̄..) − 𝛽̂(𝑥̄𝑖. − 𝑥̄..)](𝑦̄𝑖. − 𝑦̄..)

𝑖

+ 𝛽̂𝐺𝑥𝑦 

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑(𝑦̄𝑖. − 𝑦̄..)

2

𝑖

− 𝛽̂𝑞 ∑(𝑥̄𝑖. − 𝑥̄..)(𝑦̄𝑖. − 𝑦̄..)

𝑖

+ 𝛽̂𝐺𝑥𝑦  

= 𝑝𝑞𝑦̄..
2 + 𝑇𝑦𝑦 − 𝛽̂𝑇𝑥𝑦 + 𝛽̂𝐺𝑥𝑦 

= 𝑝𝑞𝑦̄..
2 + 𝑇𝑦𝑦 + 𝛽̂(𝐺𝑥𝑦 − 𝑇𝑥𝑦)         [∵ 𝐺𝑥𝑦 − 𝑇𝑥𝑦 = 𝐸𝑥𝑦] 

= 𝑝𝑞𝑦̄..
2 + 𝑇𝑦𝑦 + 𝛽̂𝐸𝑥𝑦 . . . . . . . . . (1) 
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The degrees of freedom of (1) is  

number  of parameters - 1 = 1 + 𝑝 + 1 − 1 = 𝑝 + 1 

𝐴𝑔𝑎𝑖𝑛, 𝑆𝑆(𝑑𝑢𝑒 𝑡𝑜 𝑒𝑟𝑟𝑜𝑟) = 𝑅𝑎𝑤𝑆. 𝑆 − 𝑆𝑆(𝑑𝑢𝑒 𝑡𝑜 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) 

= ∑ ∑ 𝑦𝑖𝑗
2

𝑗𝑖

− 𝑝𝑞𝑦̄..
2 − 𝑇𝑦𝑦 − 𝛽̂𝐸𝑥𝑦  

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)
2

𝑗𝑖

− 𝑇𝑦𝑦 − 𝛽̂𝐸𝑥𝑦 = 𝐺𝑦𝑦 − 𝑇𝑦𝑦 − 𝛽̂𝐸𝑥𝑦 

= 𝐸𝑦𝑦 − 𝛽̂𝐸𝑥𝑦 . . . . . . . . . (2) 

The degrees of freedom (2) is 

   = 𝑝𝑞 − (𝑝 + 1) =  𝑝𝑞 − 𝑝 − 1 

Let us now assume that our null hypothesis is true, then the model is 

   𝑦𝑖𝑗 = 𝜇 + 𝛽(𝑥𝑖𝑗 − 𝑥̄..) + 𝑒𝑖𝑗            . . . . . . . . . (𝐴)  

Now, we estimate the parameters 𝜇 and 𝛽 by using OLS 

From equation (𝐴) we get the normal equations as 

𝑦.. = 𝑝𝑞𝜇̂ + 𝛽̂̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..) 

⇒ 𝑦.. = 𝑝𝑞𝜇̂ ∵ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..) = 0. . . . . . . . . (∗) 

∴ 𝜇̂ = 𝑦̄.. 

And  

 ∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..)𝑗 = 𝜇 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..) + 𝛽̂̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑖  

⇒ ∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)(𝑥𝑖𝑗 − 𝑥̄..)

𝑗

= 𝛽̂̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑖

. . . . . . . . . (∗∗) 

⇒ 𝐺𝑥𝑦 = 𝛽̂̂𝐺𝑥𝑥  

∴ 𝛽̂̂ =
𝐺𝑥𝑦

𝐺𝑥𝑥

 

𝑆𝑆(due to estimates under 𝐻0: 𝛼𝑖 = 0 is true) = 𝜇̂𝑦.. + 𝛽̂̂ ∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..) 

= 𝑝𝑞𝑦̄..
2 + 𝛽̂̂ ∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)(𝑥𝑖𝑗 − 𝑥̄..) 

= 𝑝𝑞𝑦̄..
2 + 𝛽̂̂𝐺𝑥𝑦 . . . . . . . . . (∗∗∗) 

The degree of freedom of equation (∗∗∗) is 2. 

𝑆𝑆(due to error under 𝐻0: 𝛼𝑖 = 0 is true) = Raw𝑆. 𝑆 − 𝑆𝑆(due to estimate under 𝐻0: 𝛼𝑖 = 0 is true) 

= ∑ ∑ 𝑦𝑖𝑗
2 − 𝑝𝑞𝑦̄..

2 − 𝛽̂̂𝐺𝑥𝑦  

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄. . )
2

− 𝛽̂̂𝐺𝑥𝑦  

= 𝐺𝑦𝑦 − 𝛽̂̂𝐺𝑥𝑦 . . . . . . . . . (∗∗∗∗) 

The degrees of freedom of (∗∗∗∗) is  

𝑑. 𝑓 raw 𝑆𝑆 − 𝑑. 𝑓 of 𝑆𝑆(due to estimates under 𝐻0: 𝛼𝑖 = 0 is true) = 𝑝𝑞 − 2 

Now, we have, 

Adjusted treatment 𝑆𝑆(𝛼̂𝑖)

= 𝑆. 𝑆(due to error under 𝐻0: 𝛼𝑖 = 0 is true) − 𝑆. 𝑆(due to error under full model) 

                                          = 𝐺𝑦𝑦 − 𝛽̂̂𝐺𝑥𝑦 − 𝐸𝑦𝑦 + 𝛽̂𝐸𝑥𝑦 = 𝑇𝑦𝑦 − 𝛽̂̂𝐺𝑥𝑦 + 𝛽̂𝐸𝑥𝑦    [∵ 𝐺𝑦𝑦 − 𝐸𝑦𝑦 = 𝑇𝑦𝑦]  
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Its degrees of freedom is  

 𝑑𝑓 𝑜𝑓 𝑆. 𝑆(due to error under 𝐻0: 𝛼𝑖 = 0 is true) − 𝑑𝑓 𝑜𝑓 𝑆. 𝑆(due to error under full model) 

= (𝑝𝑞 − 2) − (𝑝𝑞 − 𝑝 − 1) 

= 𝑝 − 1 

 

To test the hypothesis 𝐻0: 𝛼𝑖 = 0 we have to use the following test statistic  

  𝐹 =

(𝑇𝑦𝑦+𝛽̂𝐸𝑥𝑦−𝛽̂̂𝐺𝑥𝑦)

(𝑝−1)
⁄

(𝐸𝑦𝑦−𝛽̂𝐸𝑥𝑦)
(𝑝𝑞−𝑝−1)

⁄
=

Adjusted 𝑀𝑆 of treatment

𝑀𝑆𝐸
 

 

Decision Rule:  

If 𝐹𝑐𝑎𝑙 < 𝐹𝛼%,(𝑝−1),(𝑝𝑞−𝑝−1) we accept the null hypothesis, that is there is no significance treatment effect. 

 

ANCOVA Table: 

S.V 𝑆𝑆(𝑥) 𝑆𝑃(𝑥𝑦) 𝑆𝑆(𝑦) 
Regression 

coefficient 
Adjusted 𝑆. 𝑆(𝛼̂𝑖) 

Treat 𝑇𝑥𝑥 𝑇𝑥𝑦  
𝛽̂ =

𝐸𝑥𝑦

𝐸𝑥𝑥

 𝑇𝑦𝑦 + 𝛽̂𝐸𝑥𝑦 − 𝛽̂̂𝐺𝑥𝑦 
Error 𝐸𝑥𝑥  𝐸𝑥𝑦  𝐸𝑦𝑦 

Total 𝐺𝑥𝑥  𝐺𝑥𝑦  𝐺𝑦𝑦   

 

Test of hypothesis 𝑯𝟎: ⥂⥂⥂ 𝜷 = 𝟎: 

To test the hypothesis 𝐻0: ⥂⥂⥂ 𝛽 = 0, let us assume that 𝛽 = 0 is true, then the model becomes 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 +

𝑒𝑖𝑗 and we get 𝜇̂ = 𝑦̄.. 𝑎𝑛𝑑 𝛼̂𝑖 = 𝑦̄𝑖. − 𝑦̄.. 

 𝑆𝑆(due to estimate if 𝐻0: 𝛽 = 0 is true) = 𝜇̂𝑦.. + ∑ 𝛼𝑖𝑦𝑖𝑖  

= 𝑝𝑞𝑦̄..
2 + ∑(𝑦̄𝑖. − 𝑦̄..)𝑦𝑖.

𝑖

 

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑(𝑦̄𝑖. − 𝑦̄..)𝑦̄𝑖.

𝑖

 

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑(𝑦̄𝑖. − 𝑦̄..)(𝑦̄𝑖. − 𝑦̄..)

𝑖

 

= 𝑝𝑞𝑦̄..
2 + 𝑇𝑦𝑦 . . . . . . . . . (1) 

The degrees of freedom of (1) is  

Number of parameters- Number of restriction = 𝑝 + 1 − 1 = 𝑝 

𝑆𝑆(due to error if  𝐻0: 𝛽 = 0 is true) = ∑ ∑ 𝑦𝑖𝑗
2

𝑗𝑖

− 𝑝𝑞𝑦̄..
2 − 𝑇𝑦𝑦 

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)
2

𝑗𝑖

− 𝑇𝑦𝑦 = 𝐺𝑦𝑦 − 𝑇𝑦𝑦 = 𝐸𝑦𝑦 

And degrees of freedom is 𝑝𝑞 − 𝑝 = 𝑝(𝑞 − 1) 

 𝑆𝑆(due to regression) = 𝑆𝑆(due to error if 𝐻0: 𝛽 = 0 is true) − 𝑆𝑆(due to error under full model) 

= 𝐸𝑦𝑦 − 𝐸𝑦𝑦 + 𝛽̂𝐸𝑥𝑦  

= 𝛽̂𝐸𝑥𝑦 

And its degrees of freedom is 𝑝(𝑞 − 1) − (𝑝𝑞 − 𝑝 − 1) = 1 

To test 𝐻0: ⥂⥂⥂ 𝛽 = 0 we use the following statistic 

yyT
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  𝐹 =
𝛽̂𝐸𝑥𝑦

1
⁄

(𝐸𝑦𝑦−𝛽̂𝐸𝑥𝑦)
(𝑝𝑞−𝑝−1)

⁄
 

Decision Rule:  

If 𝐹𝑐𝑎𝑙 < 𝐹𝑡𝑎𝑏~𝐹𝛼%,1,(𝑝𝑞−𝑝−1) then we can accept the null hypothesis, otherwise reject. 

 

Again, to test 𝐻0: ⥂⥂⥂ 𝛽 = 0 we use the following statistic 

𝑡 =
|𝛽̂|

𝑆𝐸(𝛽̂)
=

|𝛽̂|

√𝛽̂𝐸𝑥𝑦

 

Decision Rule:  

If 𝑡𝑐𝑎𝑙 < 𝑡𝑡𝑎𝑏~𝑡𝛼
2⁄ %,(𝑝𝑞−𝑝−1) then we can accept the null hypothesis, otherwise reject. 

If 𝐻0: ⥂⥂⥂ 𝛽 = 0 is accepted, then there is no justification for using concomitant variable. 

 

If 𝑯𝟎: ⥂⥂⥂ 𝜶𝒊 = 𝟎 is rejected then how do you test for which level of treatment our null hypothesis is 

rejected? 

If 𝐻0: 𝛼𝑖 = 0 is rejected then we have to test the following hypothesis 

 𝐻0: 𝛼𝑖 = 𝛼𝑖′ ;       𝑖 ≠ 𝑖 ′ = 1(1)𝑝 

                          ⇒ 𝐻0: 𝛼𝑖 − 𝛼𝑖′ = 0 

Observed treatment mean 𝑦̄𝑖.  

Adjusted treatment mean 𝑦̄𝑖. can be obtained by 𝑦̄𝑖. − 𝛽̂(𝑥̄𝑖. − 𝑥̄..) 

  𝑣𝑎𝑟(𝑎𝑑𝑗 𝑦̄𝑖.) = 𝑣𝑎𝑟[𝑦̄𝑖. − 𝛽̂(𝑥̄𝑖. − 𝑥̄..)] 

= 𝑉(𝑦̄𝑖.) + (𝑥̄𝑖. − 𝑥̄..)
2𝑉(𝛽̂) =

𝜎2

𝑞
+ (𝑥̄𝑖. − 𝑥̄..)

2
𝜎2

𝐸𝑥𝑥

 

Now,  

 𝑣𝑎𝑟(𝑎𝑑𝑗𝑦̄𝑖. − 𝑎𝑑𝑗𝑦̄𝑖′.) =
2𝜎2

𝑞
+ (𝑥̄𝑖. − 𝑥̄𝑖′.)

2 𝜎2

𝐸𝑥𝑥
 

𝑣𝑎𝑟(𝑎𝑑𝑗𝑦̄𝑖. − 𝑎𝑑𝑗𝑦̄𝑖′.) = 𝑀𝑆𝐸 [
2

𝑞
+

(𝑥̄𝑖. − 𝑥̄𝑖′.)
2

𝐸𝑥𝑥

]  if 𝜎2is known 

To test 𝐻0: 𝛼𝑖 − 𝛼𝑖′ = 0      ;         𝑖 ≠ 𝑖 ′ = 1(1)𝑝 

We consider the test statistic as 

  𝑡 =
|(𝑎𝑑𝑗𝑦̄𝑖.−𝑎𝑑𝑗𝑦̄

𝑖′.
)|

𝑆𝐸|(𝑎𝑑𝑗𝑦̄𝑖.−𝑎𝑑𝑗𝑦̄
𝑖′.

)|
=

|(𝑎𝑑𝑗𝑦̄𝑖.−𝑎𝑑𝑗𝑦̄
𝑖′.

)|

√𝑀𝑆𝐸[
2

𝑞
+

(𝑥̄𝑖.−𝑥̄
𝑖′.

)
2

𝐸𝑥𝑥
]

 

Decision Rule:  

If 𝑡𝑐𝑎𝑙 < 𝑡𝛼
2⁄ ,(𝑝𝑞−𝑝−1) we cannot reject the null hypothesis, otherwise reject. 
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In agricultural research station an experiment is conducted to study the productivity of 2 varieties of potato 

using nitrogen fertilizer. The agricultural plots for cultivation are found homogeneous in respect of 

fertility. The potato varieties are randomly allocated to different plots. But the amount of fertilizer used 

(x kg/plot) in different plots are not same. The production of potato (y kg) in different plots along with 

amount of fertilizer used are given below: 

Plot  

Potato Varities 

1 2 

y x y X 

1 45 2 55 5 

2 46 4 54 4 

3 44 3 50 6 

 

i. Analyze the data and group the varieties of potato which are similar in productivity.  

ii. Do you think that the impact of concomitant variable is homogeneous for all varieties of potato. 

 

Solution: 

Plot 
Potato Varities 

1    2    

 y x y_sq x_sq xy y x y_sq x_sq xy 

1 45 2 2025 4 90 55 5 3025 25 275 

2 46 4 2116 16 184 54 4 2916 16 216 

3 44 3 1936 9 132 50 6 2500 36 300 

 

𝑝 = 2, 𝑞 = 3, 𝐶𝑇𝑥𝑥 =
𝑥..

2

𝑝𝑞
, 𝐶𝑇𝑦𝑦 =

𝑦..
2

𝑝𝑞
 𝐶𝑇𝑦𝑦 =

𝑥..𝑦..

𝑝𝑞
 

𝐺𝑥𝑥 = ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

=

𝑗𝑖

∑ ∑ 𝑥𝑖𝑗
2 −

𝑗
𝑖

𝐶𝑇𝑥𝑥  

𝐺𝑦𝑦 = ∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)
2

𝑗𝑖

= ∑ ∑ 𝑦𝑖𝑗
2 −

𝑗
𝑖

𝐶𝑇𝑦𝑦 

𝐺𝑥𝑦 = ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)(𝑦𝑖𝑗 − 𝑦̄..)

𝑗𝑖

= ∑ ∑ 𝑥𝑖𝑗𝑦𝑖𝑗 −

𝑗𝑖

𝐶𝑇𝑥𝑦 

𝑇𝑥𝑥 = 𝑞 ∑(𝑥̄𝑖. − 𝑥̄..)
2

𝑖

=
∑ 𝑥𝑖.

2
𝑖

𝑞
− 𝐶𝑇𝑥𝑥  

𝑇𝑦𝑦 = 𝑞 ∑(𝑦̄𝑖. − 𝑦̄..)
2

𝑖

=
∑ 𝑦𝑖.

2
𝑖

𝑞
− 𝐶𝑇𝑦𝑦 

𝑇𝑥𝑦 = 𝑞 ∑(𝑥̄𝑖. − 𝑥̄..)(𝑦̄𝑖. − 𝑦̄..)

𝑖

=
∑ 𝑥̄𝑖.𝑦̄𝑖.𝑖

𝑞
−𝐶𝑇𝑥𝑦 

For Full Model, 𝛽̂ =
𝐸𝑥𝑦

𝐸𝑥𝑥
 ,            𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = (𝐸𝑦𝑦 − 𝛽̂𝐸𝑥𝑦); 𝑑𝑓 = (𝑝𝑞 − 𝑝 − 1) 

                          Under 𝐻0: 𝛼𝑖 = 0,       𝛽̂̂ =
𝐺𝑥𝑦

𝐺𝑥𝑥
 

 

ANCOVA Table: 

S.V 𝑆𝑆(𝑥) 𝑆𝑃(𝑥𝑦) 𝑆𝑆(𝑦) 
Regression 

coefficient 
Adjusted 𝑆. 𝑆(𝛼̂𝑖) 
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Treat 𝑇𝑥𝑥 𝑇𝑥𝑦  
𝛽̂ =

𝐸𝑥𝑦

𝐸𝑥𝑥

 𝑇𝑦𝑦 + 𝛽̂𝐸𝑥𝑦 − 𝛽̂̂𝐺𝑥𝑦 
Error 𝐸𝑥𝑥  𝐸𝑥𝑦  𝐸𝑦𝑦 

Total 𝐺𝑥𝑥  𝐺𝑥𝑦  𝐺𝑦𝑦   

 

 

Test of hypothesis 𝑯𝟎: 𝜶𝒊 = 𝟎 

 

𝐹 =

(𝑇𝑦𝑦 + 𝛽̂𝐸𝑥𝑦 − 𝛽̂̂𝐺𝑥𝑦)

(𝑝 − 1)
⁄

(𝐸𝑦𝑦 − 𝛽̂𝐸𝑥𝑦)
(𝑝𝑞 − 𝑝 − 1)

⁄

 

𝑡 =
|(𝑎𝑑𝑗𝑦̄𝑖. − 𝑎𝑑𝑗𝑦̄𝑖′.)|

𝑆𝐸|(𝑎𝑑𝑗𝑦̄𝑖. − 𝑎𝑑𝑗𝑦̄𝑖′.)|
=

|(𝑎𝑑𝑗𝑦̄𝑖. − 𝑎𝑑𝑗𝑦̄𝑖′.)|

√𝑀𝑆𝐸 [
2
𝑞

+
(𝑥̄𝑖. − 𝑥̄𝑖′.)

2

𝐸𝑥𝑥
]

 

Test of hypothesis 𝑯𝟎: 𝜷 = 𝟎: 

 

𝐹 =

𝛽̂𝐸𝑥𝑦
1

⁄

(𝐸𝑦𝑦 − 𝛽̂𝐸𝑥𝑦)
(𝑝𝑞 − 𝑝 − 1)

⁄

 

Analysis of Covariance in Randomized Block Design with one Concomitant Variable (RBD): 

 

Randomized Block Design: 

A randomized block design is a design in which the whole set of experimental units are arranged in several blocks 

which are internally homogeneous and treatments are randomly allocated to the experimental units within each 

block such that each treatment occurs once or some number of times in each block. 

 

The linear model of analysis of covariance in RBD with concomitant is given by 

  𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾(𝑥𝑖𝑗 − 𝑥̄..) + 𝑒𝑖𝑗                 ;  𝑖 = 1 (1) 𝑝   ,   𝑗 = 1 (1)𝑞 

where, 𝑦𝑖𝑗 is the observation receiving the 𝑖𝑡ℎ block and 𝑗𝑡ℎ treatment  

𝜇 is general mean effect 

𝛼𝑖 is the 𝑖𝑡ℎ block effect 

𝛽𝑗 is the 𝑗𝑡ℎ treatment effect 

𝛾 is the regression coefficient of y on x 

𝑥𝑖𝑗  is the concomitant variable associated with 𝑦𝑖𝑗 

𝑒𝑖𝑗 is the random error component. 

 

Assumptions: 

1. Response variable 𝑦 is independently distributed with constant variance 𝜎2. 

2. The concomitant variables 𝑥′𝑠 are fixed and measured without error. 

3. Concomitant variable 𝑥 is not influenced by the treatments. 

4. Regression of y on 𝑥 is linear. 

5. Block effect, treatment effect and regression effects are additive. 

yyT
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6. ∑ 𝛼𝑖
𝑝
𝑖=1 = ∑ 𝛽𝑗

𝑞
𝑗=1 = 0. 

7. Regression coefficient 𝛾 ≠ 0. 

8. 𝜇, 𝛼𝑖 , 𝛽𝑗 , 𝑎𝑛𝑑𝛾 are unknown parameters. 

9. 𝑒𝑖𝑗~𝑁𝐼𝐷(0, 𝜎2). 

 

Parameters estimation: 

By using OLS method we estimate the parameters of the model  

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾(𝑥𝑖𝑗 − 𝑥̄..) + 𝑒𝑖𝑗  

∴ 𝛷 = ∑ ∑ 𝑒𝑖𝑗
2

𝑗𝑖

= ∑ ∑[𝑦𝑖𝑗 − 𝜇 − 𝛼𝑖 − 𝛽𝑗 − 𝛾(𝑥𝑖𝑗 − 𝑥̄..)]
2

𝑗𝑖

. . . . . . . . . (1) 

From equation (1) we obtain the following normal equations 

 𝑦.. = 𝑝𝑞𝜇̂ + 𝑞 ∑ 𝛼̂𝑖𝑖 + 𝑝 ∑ 𝛽̂𝑗𝑗 + 𝛾 ∑ ∑ (𝑥𝑖𝑗 − 𝑥̄..)𝑗𝑖 [∵ ∑ ∑ (𝑥𝑖𝑗 − 𝑥̄. . )𝑗𝑖 = 0] 

= 𝑝𝑞𝜇̂ + 𝑞 ∑ 𝛼̂𝑖

𝑖

+ 𝑝 ∑ 𝛽̂𝑗

𝑗

. . . . . . . . . (2) 

𝑦𝑖. = 𝑞𝜇̂ + 𝑞𝛼̂𝑖 + 𝑝 ∑ 𝛽̂𝑗

𝑗

+ 𝛾(𝑥𝑖 . −𝑞𝑥̄..). . . . . . . . . (3) 

𝑦.𝑗 = 𝑝𝜇̂ + 𝑞 ∑ 𝛼̂𝑖

𝑖

+ 𝑝𝛽̂𝑗 + 𝛾(𝑥.𝑗 − 𝑝𝑥̄..). . . . . . . . . (4) 

∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

= 𝜇̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

+ 𝑞 ∑ 𝛼̂𝑖(𝑥𝑖𝑗 − 𝑥̄..)

𝑖

+ 𝑝 ∑ 𝛽̂𝑗(𝑥𝑖𝑗 − 𝑥̄..)

𝑗

+ 𝛾 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

 

= 𝑞 ∑ 𝛼̂𝑖(𝑥𝑖𝑗 − 𝑥̄..)

𝑖

+ 𝑝 ∑ 𝛽̂𝑗(𝑥𝑖𝑗 − 𝑥̄..)

𝑗

+ 𝛾 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

. . . . . . . . . (5) 

We see that the above equations are not independent. Hence we cannot get the unique solution of the parameters. 

To get unique solution of the parameters we have to put some restrictions. They are 

   ∑ 𝛼𝑖
𝑝
𝑖=1 = ∑ 𝛽𝑗

𝑞
𝑗=1  

Let us define, 

𝐺𝑥𝑥 = ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

 

𝐺𝑦𝑦 = ∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)
2

𝑗𝑖

 

𝐺𝑥𝑦 = ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)(𝑦𝑖𝑗 − 𝑦̄..)

𝑗𝑖

 

𝑇𝑥𝑥 = 𝑝 ∑(𝑥̄.𝑗 − 𝑥̄..)
2

𝑗

 

𝑇𝑦𝑦 = 𝑝 ∑(𝑦𝑖𝑗 − 𝑦̄..)
2

𝑗

 

𝑇𝑥𝑦 = 𝑝 ∑(𝑥̄.𝑗 − 𝑥̄..)(𝑦̄.𝑗− 𝑦̄..)

𝑗

 

𝐵𝑥𝑥 = 𝑞 ∑(𝑥̄𝑖. − 𝑥̄..)
2

𝑖

 

𝐵𝑦𝑦 = 𝑞 ∑(𝑦̄𝑖. − 𝑦̄..)
2

𝑗

 

𝐵𝑥𝑦 = 𝑞 ∑(𝑥̄𝑖. − 𝑥̄..)(𝑦̄𝑖. − 𝑦̄..)

𝑖

 

 

𝐸𝑥𝑥 = 𝐺𝑥𝑥 − 𝐵𝑥𝑥 − 𝑇𝑥𝑥  

𝐸𝑦𝑦 = 𝐺𝑦𝑦 − 𝐵𝑦𝑦 − 𝑇𝑦𝑦 

𝐸𝑥𝑦 = 𝐺𝑥𝑦 − 𝐵𝑥𝑦 − 𝑇𝑥𝑦  

Putting the restrictions using the above expression we get from the normal equations 

  𝜇̂ = 𝑦̄.. 

𝛼̂𝑖 = 𝑦̄𝑖. − 𝑦̄.. − 𝛾(𝑥̄𝑖. − 𝑥̄..) 

𝛽̂𝑖 = 𝑦̄.𝑗 − 𝑦̄.. − 𝛾(𝑥̄.𝑗 − 𝑥̄..) 
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From (5) we obtain, 

 ∑ ∑ (𝑦𝑖𝑗 − 𝑦̄..)(𝑥𝑖𝑗 − 𝑥̄..)𝑗𝑖 = 𝑞 ∑ [(𝑦̄𝑖. − 𝑦̄..) − 𝛾(𝑥̄𝑖. − 𝑥̄..)](𝑥̄𝑖. − 𝑥̄..)𝑖  

+𝑝 ∑[(𝑦̄.𝑗 − 𝑦̄..) − 𝛾(𝑥̄.𝑗 − 𝑥̄..)](𝑥̄.𝑗 − 𝑥̄..)

𝑗

+ 𝛾 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

 

= 𝑞 ∑(𝑦̄𝑖. − 𝑦̄..)(𝑥̄𝑖. − 𝑥̄..)

𝑖

− 𝛾𝑞 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

 

+𝑝 ∑(𝑦̄.𝑗 − 𝑦̄..)(𝑥̄.𝑗 − 𝑥̄..)

𝑗

− 𝛾𝑝 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

+ 𝛾𝐺𝑥𝑥  

⇒ 𝐺𝑥𝑦 = 𝐵𝑥𝑦 − 𝛾𝐵𝑥𝑥 + 𝑇𝑥𝑦 − 𝛾𝑇𝑥𝑥 + 𝛾𝐺𝑥𝑥  

⇒ 𝐺𝑥𝑦 − 𝐵𝑥𝑦 − 𝑇𝑥𝑦 = 𝛾(𝐺𝑥𝑥 − 𝐵𝑥𝑥 − 𝑇𝑥𝑥) 

⇒ 𝐸𝑥𝑦 = 𝛾𝐸𝑥𝑥  

∴ 𝛾 =
𝐸𝑥𝑦

𝐸𝑥𝑥

 

Now, we have to test whether there is any effect of treatment or not i.e. 𝐻0: 𝛽𝑗 = 0. 
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First we conclude different sum of squares under the model 

 𝑆𝑆(duetoestimate) = 𝜇̂𝑦.. + ∑ 𝛼̂𝑖𝑦𝑖.𝑖 + ∑ 𝛽̂𝑗𝑦.𝑗𝑗 + 𝛾 ∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..)𝑗𝑖  

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑[(⥂⥂ 𝑦̄𝑖. − 𝑦̄..) − 𝛾(𝑥̄𝑖. − 𝑥̄..)]𝑦̄𝑖.

𝑖

 

+𝑝 ∑[(𝑦̄.𝑗 − 𝑦̄..) − 𝛾(𝑥̄.𝑗 − 𝑥̄..)]𝑦̄.𝑗

𝑗

+ 𝛾 ∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

 

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑[(𝑦̄𝑖. − 𝑦̄..) − 𝛾(𝑥̄𝑖. − 𝑥̄..)](𝑦̄.𝑗 − 𝑦̄..)

𝑖

 

+𝑝 ∑[(𝑦̄.𝑗 − 𝑦̄..) − 𝛾(𝑥̄.𝑗 − 𝑥̄..)](𝑦̄.𝑗 − 𝑦̄..)

𝑗

+ 𝛾 ∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

 

= 𝑝𝑞𝑦̄..
2 + 𝐵𝑦𝑦 − 𝛾𝐵𝑥𝑦 + 𝑇𝑦𝑦 − 𝛾𝑇𝑥𝑦 + 𝛾𝐺𝑥𝑦  

= 𝑝𝑞𝑦̄..
2 + 𝐵𝑦𝑦 + 𝑇𝑦𝑦 + 𝛾(𝐺𝑥𝑦 − 𝐵𝑥𝑦 − 𝑇𝑥𝑦) 

= 𝑝𝑞𝑦̄..
2 + 𝐵𝑦𝑦 + 𝑇𝑦𝑦 + 𝛾𝐸𝑥𝑦 = 𝑆1. . . . . . . . . (∗) 

The degrees of freedom of (∗) is 

   Number of parameters - Number of restrictions =  (1 + 𝑝 + 𝑞 + 1)-2 =  𝑝 + 𝑞 

 𝑆𝑆(due to error) = raw  𝑆𝑆 − 𝑆𝑆(due to estimate) 

= ∑ ∑ 𝑦𝑖𝑗
2

𝑗𝑖

− 𝑝𝑞𝑦̄..
2 − 𝐵𝑦𝑦 − 𝑇𝑦𝑦 − 𝛾𝐸𝑥𝑦 

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄. . )
2

𝑗𝑖

− 𝐵𝑦𝑦 − 𝑇𝑦𝑦 − 𝛾𝐸𝑥𝑦  

= 𝐺𝑦𝑦 − 𝐵𝑦𝑦 − 𝑇𝑦𝑦 − 𝛾𝐸𝑥𝑦  

= 𝐸𝑦𝑦 − 𝛾𝐸𝑥𝑦 = 𝑆2. . . . . . . . . (∗∗) 

The degrees of freedom of (∗∗) is (𝑝𝑞 − 𝑝 − 𝑞) 

 

Our main object is to test whether there is any effect of treatment or not i.e. 𝑯𝟎: 𝜷𝒋 = 𝟎: 

Under 𝐻0: 𝛽𝑗 = 0, the model becomes 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛾(𝑥𝑖𝑗 − 𝑥̄..) + 𝑒𝑖𝑗  

Now, we apply OLS and find the normal equations as 

𝑦.. = 𝑝𝑞𝜇̂ + 𝑞 ∑ 𝛼̂𝑖

𝑖

+ 𝛾 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

= 𝑝𝑞𝜇̂ + 𝑞 ∑ 𝛼̂𝑖

𝑖

 

𝑦𝑖. = 𝑞𝜇̂ + 𝑞𝛼̂𝑖 + 𝛾(𝑥𝑖. − 𝑞𝑥̄..) 

∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

= 𝜇̂ ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

+ 𝑞 ∑ 𝛼𝑖(𝑥̄𝑖. − 𝑥̄..)

𝑖

+ 𝛾 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

 

From the above normal equations 

𝜇̂ = 𝑦̄.. 

𝛼̂𝑖 = (𝑦̄𝑖. − 𝑦̄..) − 𝛾(𝑥̄𝑖. − 𝑥̄..) 

∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

= 𝑞 ∑[(𝑦̄𝑖. − 𝑦̄..) − 𝛾(𝑥̄𝑖. − 𝑥̄..)](𝑥̄𝑖. − 𝑥̄..)

𝑖

+ 𝛾 ∑ ∑(𝑥𝑖𝑗 − 𝑥̄..)
2

𝑗𝑖

 

⇒ 𝐺𝑥𝑦 = 𝐵𝑥𝑦 − 𝛾𝐵𝑥𝑥 + 𝛾𝐺𝑥𝑥  

⇒ 𝐺𝑥𝑦 − 𝐵𝑥𝑦 = 𝛾(𝐺𝑥𝑥 − 𝐵𝑥𝑥) 

⇒ 𝐸𝑥𝑦 + 𝑇𝑥𝑦 = 𝛾(𝐸𝑥𝑥 + 𝑇𝑥𝑥) 

∴ 𝛾 =
𝐸𝑥𝑦 + 𝑇𝑥𝑦

𝐸𝑥𝑥 + 𝑇𝑥𝑥
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 Now,  

          𝑆𝑆(duetoestimate  |𝐻0: 𝛽𝑗 = 0) = 𝜇̂𝑦.. + ∑ 𝛼̂𝑖𝑦𝑖.𝑖 + 𝛾 ∑ ∑ 𝑦𝑖𝑗(𝑥𝑖𝑗 − 𝑥̄..)𝑗𝑖  

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑[(⥂⥂ 𝑦̄𝑖. − 𝑦̄..) − 𝛾(𝑥̄𝑖. − 𝑥̄..)]𝑦̄𝑖.

𝑖

+ 𝛾 ∑ ∑(𝑦𝑖𝑗 − 𝑦̄..)(𝑥𝑖𝑗 − 𝑥̄..)

𝑗𝑖

 

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑[(⥂⥂ 𝑦̄𝑖. − 𝑦̄..) − 𝛾(𝑥̄𝑖. − 𝑥̄..)](𝑦𝑖𝑗 − 𝑦̄..)

𝑖

+ 𝛾𝐺𝑥𝑦  

= 𝑝𝑞𝑦̄..
2 + 𝐵𝑦𝑦 − 𝛾𝐵𝑥𝑦 + 𝛾𝐺𝑥𝑦  

= 𝑝𝑞𝑦̄..
2 + 𝐵𝑦𝑦 − 𝛾(𝐺𝑥𝑦 − 𝐵𝑥𝑦) 

= 𝑝𝑞𝑦̄..
2 + 𝐵𝑦𝑦 − 𝛾(𝐸𝑥𝑦 + 𝑇𝑥𝑦) = 𝑆3. . . . . . . . . (∗∗∗) 

The degrees of freedom of (∗∗∗) is (1 + 𝑝 + 1) − 1 = 𝑝 + 1 

 𝑆𝑆(duetoerror|𝐻0) = ∑ ∑ 𝑦𝑖𝑗
2

𝑗𝑖 − 𝑝𝑞𝑦̄..
2 − 𝐵𝑦𝑦 − 𝛾(𝐸𝑥𝑦 + 𝑇𝑥𝑦) 

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄. . )
2

𝑗𝑖

− 𝐵𝑦𝑦 − 𝛾(𝐸𝑥𝑦 + 𝑇𝑥𝑦) 

= 𝐺𝑦𝑦 − 𝐵𝑦𝑦 − 𝛾(𝐸𝑥𝑦 + 𝑇𝑥𝑦) 

= 𝐸𝑦𝑦 + 𝑇𝑦𝑦 − 𝛾(𝐸𝑥𝑦 + 𝑇𝑥𝑦) = 𝑆4. . . . . . . . . (∗∗∗∗) 

Its degrees of freedom is (𝑝𝑞 − 𝑝 − 1) 

 

Now,  

Adjusted treatment  𝑆𝑆  or  𝑆𝑆(𝛽̂𝑗) = 𝑆𝑆(duetoerror|𝐻0) − 𝑆𝑆(duetoerrorunderfullmodel) 

= 𝑆4 − 𝑆2 

= 𝐸𝑦𝑦 + 𝑇𝑦𝑦 − 𝛾(𝐸𝑥𝑦 + 𝑇𝑥𝑦) − 𝐸𝑦𝑦 + 𝛾𝐸𝑥𝑦  

= 𝑇𝑦𝑦 + 𝛾𝐸𝑥𝑦 − 𝛾(𝐸𝑥𝑦 + 𝑇𝑥𝑦) = 𝑆5 

Its degrees of freedom  =  𝑑. 𝑓of𝑆4 − 𝑑. 𝑓of𝑆2 

= (𝑝𝑞 − 𝑝 − 1) − (𝑝𝑞 − 𝑝 − 𝑞) = 𝑞 − 1 

To test the hypothesis 𝐻0: 𝛽𝑗 = 0 we consider the following test statistic 

𝐹 =

𝑆5
(𝑞 − 1)⁄

𝑆2
(𝑝𝑞 − 𝑝 − 𝑞)⁄

=

[𝑇𝑦𝑦 + 𝛾𝐸𝑥𝑦 − 𝛾(𝐸𝑥𝑦 + 𝑇𝑥𝑦)]
(𝑞 − 1)

⁄

(𝐸𝑦𝑦 − 𝛾𝐸𝑥𝑦)
(𝑝𝑞 − 𝑝 − 𝑞)

⁄

 

IF𝐹𝑐𝑎𝑙 < 𝐹𝛼%,(𝑞−1),(𝑝𝑞−𝑝−𝑞), we accept the null hypothesis, otherwise we reject the null hypothesis. 

 

ANCOVA Table: 

S.V. 𝑑. 𝑓 𝑆𝑆(𝑥) 𝑆𝑆(𝑦) 𝑆𝑃𝑥𝑦 
Regression 

coefficient 
Adjusted 𝑆. 𝑆 Under 𝐻0 Adjusted 𝑆. 𝑆 

Block 𝑃 − 1 𝐵𝑥𝑥 𝐵𝑦𝑦 𝐵𝑥𝑦  

𝛾 =
𝐸𝑥𝑦

𝐸𝑥𝑥

 𝐸𝑦𝑦 − 𝛾𝐸𝑥𝑦  𝐸𝑥𝑥  Treat 𝑞 − 1 𝑇𝑥𝑥 𝑇𝑦𝑦 𝑇𝑥𝑦 

Error 𝑝𝑞 − 𝑝 − 𝑞 𝐸𝑥𝑥  𝐸𝑦𝑦 𝐸𝑥𝑦  

Treat + 

Error 
 

𝐸𝑥𝑥

+ 𝑇𝑥𝑥 

𝐸𝑦𝑦

+ 𝑇𝑦𝑦  

𝐸𝑥𝑦

+ 𝑇𝑥𝑦 
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What is the justification for using one concomitant variable? 

To test the justification for using one concomitant variable we have to test 𝐻0: 𝛾 = 0. Under𝐻0: 𝛾 = 0, the model 

becomes 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗 

 

By using OLS we obtain the following normal equations 

𝑦.. = 𝑝𝑞𝜇̂ + 𝑞 ∑ 𝛼̂𝑖

𝑖

+ 𝑝 ∑ 𝛽̂𝑗

𝑗

 

𝑦𝑖. = 𝑞𝜇̂ + 𝑞𝛼̂𝑖 + ∑ 𝛽̂𝑗

𝑗

 

 

Since there two normal equations are not independent. So for getting unique solution we have to put some 

restrictions, such as ∑ 𝛼̂𝑖𝑖 = 0 and ∑ 𝛽̂𝑗𝑗 = 0. Putting the restrictions we obtain 

𝜇̂ = 𝑦̄. . ; 𝛼̂𝑖 = 𝑦̄𝑖 . −𝑦̄. . 𝑎𝑛𝑑𝛽̂𝑗 = 𝑦̄.𝑗− 𝑦̄.. 

Now, 

𝑆𝑆(duetoestimatesunder𝐻0: 𝛾 = 0) = 𝜇̂𝑦.. + ∑ 𝛼̂𝑖𝑦𝑖.

𝑖

+ ∑ 𝛽̂𝑗𝑦.𝑗

𝑗

 

= 𝑝𝑞𝑦̄..
2 + ∑(𝑦̄𝑖. − 𝑦̄..)𝑦𝑖.

𝑖

+ ∑(𝑦.𝑗 − 𝑦̄..)𝑦.𝑗

𝑗

 

= 𝑝𝑞𝑦̄..
2 + 𝑞 ∑(𝑦̄𝑖. − 𝑦̄..)

2

𝑖

+ 𝑝 ∑(𝑦.𝑗 − 𝑦̄..)
2

𝑗

 

= 𝑝𝑞𝑦̄..
2 + ∑(𝑦̄𝑖. − 𝑦̄..)𝑦𝑖.

𝑖

+ ∑(𝑦.𝑗 − 𝑦̄..)𝑦.𝑗

𝑗

 

= 𝑝𝑞𝑦̄..
2 + 𝐵𝑦𝑦 + 𝑇𝑦𝑦 = 𝑆6 

Its degrees of freedom is (1 + 𝑝 + 𝑞) − 2 = 𝑝 + 𝑞 − 1 

 

𝑆𝑆(duetoerrorunder𝐻0: 𝛾 = 0) = ∑ ∑ 𝑦𝑖𝑗
2

𝑗𝑖

− 𝑝𝑞𝑦̄..
2 − 𝐵𝑦𝑦 − 𝑇𝑦𝑦 

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄. . )
2

𝑗𝑖

− 𝐵𝑦𝑦 − 𝑇𝑦𝑦 = 𝐺𝑦𝑦 − 𝐵𝑦𝑦 − 𝑇𝑦𝑦 

= 𝐸𝑦𝑦 = 𝑆7 

 

Its degrees of freedom is  

𝑝𝑞 − (𝑝 + 𝑞 − 1) = 𝑝𝑞 − 𝑝 − 𝑞 + 1 

= (𝑝 − 1)(𝑞 − 1) 

 

And𝑆𝑆(𝑑𝑢𝑒𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) = 𝑆𝑆(𝛾) = 𝑆𝑆(𝑑𝑢𝑒𝑡𝑜𝑒𝑟𝑟𝑜𝑟|𝐻0) − 𝑆𝑆(𝑑𝑢𝑒𝑡𝑜𝑒𝑟𝑟𝑜𝑟𝑢𝑛𝑑𝑒𝑟𝑓𝑢𝑙𝑙) 

= 𝐸𝑦𝑦 − 𝐸𝑦𝑦 + 𝛾𝐸𝑥𝑦  

= 𝛾𝐸𝑥𝑦 = 𝑆8 

Its degrees of freedom is (𝑝𝑞 − 𝑝 − 𝑞 + 1) − (𝑝𝑞 − 𝑝 − 𝑞) = 1 
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To test the null hypothesis 𝐻0: 𝛾 = 0 we consider the test statistic 

  𝐹 =
𝑅𝑆𝑆

𝑑.𝑓⁄

𝑆𝑆𝐸
𝑑.𝑓⁄

=
𝛾̂𝐸𝑥𝑦

1
⁄

(𝐸𝑦𝑦−𝛾̂𝐸𝑥𝑦)
(𝑝𝑞−𝑝−𝑞)

⁄
 

If 𝐹𝑐𝑎𝑙 < 𝐹𝛼,1,(𝑝𝑞−𝑝−𝑞), we accept the null hypothesis otherwise reject null hypothesis. If we reject the null 

hypothesis then we have need justification about the concomitant variable.  

 

 

To test 𝐻0: 𝛾 = 0 we consider the statistic 

    𝑡 =
|𝛾̂|

√𝜎̂2
𝐸𝑥𝑥

⁄

where  𝜎̂2 =
𝐸𝑆𝑆

𝑝𝑞−𝑝−𝑞
 

If 𝑡𝑐𝑎𝑙 < 𝑡𝛼
2⁄ ,(𝑝𝑞−𝑝−𝑞) we accept null hypothesis otherwise reject. 

 

If treatment effect is insignificant, then need to test for which treatment the test is insignificant. Then we have to 

test the null hypothesis 

  𝐻0: 𝛽𝑗 = 𝛽𝑗′𝑗 ≠ 𝑗′ = 1(1)𝑞 

⇒ 𝐻0: 𝛽𝑗 − 𝛽𝑗′ = 0which is contrast 

 

Adjusted treatment mean is calculated by 𝑎𝑑𝑗𝑦̄.𝑗 = 𝑦̄.𝑗 − 𝛾(𝑥̄.𝑗 − 𝑥̄..) 

Now,  

𝑣𝑎𝑟(𝑎𝑑𝑗𝑦̄.𝑗) = 𝑣𝑎𝑟[𝑦̄.𝑗 − 𝛾(𝑥̄.𝑗 − 𝑥̄..)] 

=
𝜎2

𝑝
+ (𝑥̄.𝑗 − 𝑥̄..)

2 𝜎2

𝐸𝑥𝑥

 

∴ 𝑣𝑎𝑟(𝑎𝑑𝑗𝑦̄.𝑗 − 𝑎𝑑𝑗𝑦̄.𝑗′) = 𝜎2 [
2

𝑝
+

(𝑥̄.𝑗 − 𝑥̄.𝑗′)
2

𝐸𝑥𝑥

] 

 

 

To test 𝐻0: 𝛽𝑗 = 𝛽𝑗′ we use the statistic as  

𝑡 =
|𝑎𝑑𝑗𝑦̄.𝑗 − 𝑎𝑑𝑗𝑦̄.𝑗′|

𝑆𝐸(𝑎𝑑𝑗𝑦̄.𝑗 − 𝑎𝑑𝑗𝑦̄.𝑗′)
=

|𝑎𝑑𝑗𝑦̄.𝑗 − 𝑎𝑑𝑗𝑦̄.𝑗′|

√𝑀𝑆𝐸 [
2
𝑝

+
(𝑥̄.𝑗 − 𝑥̄.𝑗′)

2

𝐸𝑥𝑥
]

 

If 𝑡𝑐𝑎𝑙 < 𝑡𝛼
2⁄ ,(𝑝𝑞−𝑝−𝑞), we accept the null hypothesis otherwise reject. 

 


